3 resultados para Cost Inefficiency

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Many African countries are rapidly expanding HIV/AIDS treatment programs. Empirical information on the cost of delivering antiretroviral therapy (ART) for HIV/AIDS is needed for program planning and budgeting. Methods: We searched published and gray sources for estimates of the cost of providing ART in service delivery (non-research) settings in sub-Saharan Africa. Estimates were included if they were based on primary local data for input prices. Results: 17 eligible cost estimates were found. Of these, 10 were from South Africa. The cost per patient per year ranged from $396 to $2,761. It averaged approximately $850/patient/year in countries outside South Africa and $1,700/patient/year in South Africa. The most recent estimates for South Africa averaged $1,200/patient/year. Specific cost items included in the average cost per patient per year varied, making comparison across studies problematic. All estimates included the cost of antiretroviral drugs and laboratory tests, but many excluded the cost of inpatient care, treatment of opportunistic infections, and/or clinic infrastructure. Antiretroviral drugs comprised an average of one third of the cost of treatment in South Africa and one half to three quarters of the cost in other countries. Conclusions: There is very little empirical information available about the cost of providing antiretroviral therapy in non-research settings in Africa. Methods for estimating costs are inconsistent, and many estimates combine data drawn from disparate sources. Cost analysis should become a routine part of operational research on the treatment rollout in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of unicast routing is to find a path from a source to a destination. Conventional routing has been used mainly to provide connectivity. It lacks the ability to provide any kind of service guarantees and smart usage of network resources. Improving performance is possible by being aware of both traffic characteristics and current available resources. This paper surveys a range of routing solutions, which can be categorized depending on the degree of the awareness of the algorithm: (1) QoS/Constraint-based routing solutions are aware of traffic requirements of individual connection requests; (2) Traffic-aware routing solutions assume knowledge of the location of communicating ingress-egress pairs and possibly the traffic demands among them; (3) Routing solutions that are both QoS-aware as (1) and traffic-aware as (2); (4) Best-effort solutions are oblivious to both traffic and QoS requirements, but are adaptive only to current resource availability. The best performance can be achieved by having all possible knowledge so that while finding a path for an individual flow, one can make a smart choice among feasible paths to increase the chances of supporting future requests. However, this usually comes at the cost of increased complexity and decreased scalability. In this paper, we discuss such cost-performance tradeoffs by surveying proposed heuristic solutions and hybrid approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the Internet has evolved and grown, an increasing number of nodes (hosts or autonomous systems) have become multihomed, i.e., a node is connected to more than one network. Mobility can be viewed as a special case of multihoming—as a node moves, it unsubscribes from one network and subscribes to another, which is akin to one interface becoming inactive and another active. The current Internet architecture has been facing significant challenges in effectively dealing with multihoming (and consequently mobility). The Recursive INternet Architecture (RINA) [1] was recently proposed as a clean-slate solution to the current problems of the Internet. In this paper, we perform an average-case cost analysis to compare the multihoming / mobility support of RINA, against that of other approaches such as LISP and MobileIP. We also validate our analysis using trace-driven simulation.