2 resultados para Coplanar Waveguide Fed Strip Monopole
em Boston University Digital Common
Resumo:
In the Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL), the deposition of a high-energy proton beam into the liquid mercury target forms bubbles whose asymmetric collapse cause Cavitation Damage Erosion (CDE) to the container walls, thereby reducing its usable lifetime. One proposed solution for mitigation of this damage is to inject a population of microbubbles into the mercury, yielding a compliant and attenuative medium that will reduce the resulting cavitation damage. This potential solution presents the task of creating a diagnostic tool to monitor bubble population in the mercury flow in order to correlate void fraction and damage. Details of an acoustic waveguide for the eventual measurement of two-phase mercury-helium flow void fraction are discussed. The assembly’s waveguide is a vertically oriented stainless steel cylinder with 5.08cm ID, 1.27cm wall thickness and 40cm length. For water experiments, a 2.54cm thick stainless steel plate at the bottom supports the fluid, provides an acoustically rigid boundary condition, and is the mounting point for a hydrophone. A port near the bottom is the inlet for the fluid of interest. A spillover reservoir welded to the upper portion of the main tube allows for a flow-through design, yielding a pressure release top boundary condition for the waveguide. A cover on the reservoir supports an electrodynamic shaker that is driven by linear frequency sweeps to excite the tube. The hydrophone captures the frequency response of the waveguide. The sound speed of the flowing medium is calculated, assuming a linear dependence of axial mode number on modal frequency (plane wave). Assuming that the medium has an effective-mixture sound speed, and that it contains bubbles which are much smaller than the resonance radii at the highest frequency of interest (Wood’s limit), the void fraction of the flow is calculated. Results for water and bubbly water of varying void fraction are presented, and serve to demonstrate the accuracy and precision of the apparatus.
Resumo:
Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.