3 resultados para Control-flow
em Boston University Digital Common
Resumo:
We describe a GB parser implemented along the lines of those written by Fong [4] and Dorr [2]. The phrase structure recovery component is an implementation of Tomita's generalized LR parsing algorithm (described in [10]), with recursive control flow (similar to Fong's implementation). The major principles implemented are government, binding, bounding, trace theory, case theory, θ-theory, and barriers. The particular version of GB theory we use is that described by Haegeman [5]. The parser is minimal in the sense that it implements the major principles needed in a GB parser, and has fairly good coverage of linguistically interesting portions of the English language.
Resumo:
High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.
Resumo:
Parallel computing on a network of workstations can saturate the communication network, leading to excessive message delays and consequently poor application performance. We examine empirically the consequences of integrating a flow control protocol, called Warp control [Par93], into Mermera, a software shared memory system that supports parallel computing on distributed systems [HS93]. For an asynchronous iterative program that solves a system of linear equations, our measurements show that Warp succeeds in stabilizing the network's behavior even under high levels of contention. As a result, the application achieves a higher effective communication throughput, and a reduced completion time. In some cases, however, Warp control does not achieve the performance attainable by fixed size buffering when using a statically optimal buffer size. Our use of Warp to regulate the allocation of network bandwidth emphasizes the possibility for integrating it with the allocation of other resources, such as CPU cycles and disk bandwidth, so as to optimize overall system throughput, and enable fully-shared execution of parallel programs.