2 resultados para Confirmation Contention

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel computing on a network of workstations can saturate the communication network, leading to excessive message delays and consequently poor application performance. We examine empirically the consequences of integrating a flow control protocol, called Warp control [Par93], into Mermera, a software shared memory system that supports parallel computing on distributed systems [HS93]. For an asynchronous iterative program that solves a system of linear equations, our measurements show that Warp succeeds in stabilizing the network's behavior even under high levels of contention. As a result, the application achieves a higher effective communication throughput, and a reduced completion time. In some cases, however, Warp control does not achieve the performance attainable by fixed size buffering when using a statically optimal buffer size. Our use of Warp to regulate the allocation of network bandwidth emphasizes the possibility for integrating it with the allocation of other resources, such as CPU cycles and disk bandwidth, so as to optimize overall system throughput, and enable fully-shared execution of parallel programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.