9 resultados para Computer forensic analysis

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An introductory laboratory on the identification of analgesics in an unknown sample. Ideal for the first week of an organic chemistry sequence to get students familiar with their surroundings. Students extract, isolate, and perform thin layer chromatography on aspirin, acetominophen, or ibuprofen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper, Structural Analysis of Network Traffic Flows, we analyzed the set of Origin Destination traffic flows from the Sprint-Europe and Abilene backbone networks. This report presents the complete set of results from analyzing data from both networks. The results in this report are specific to the Sprint-1 and Abilene datasets studied in the above paper. The following results are presented here: 1 Rows of Principal Matrix (V) 2 1.1 Sprint-1 Dataset ................................ 2 1.2 Abilene Dataset.................................. 9 2 Set of Eigenflows 14 2.1 Sprint-1 Dataset.................................. 14 2.2 Abilene Dataset................................... 21 3 Classifying Eigenflows 26 3.1 Sprint-1 Dataset.................................. 26 3.2 Abilene Datase.................................... 44

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce "BU-MIA," a Medical Image Analysis system that integrates various advanced chest image analysis methods for detection, estimation, segmentation, and registration. BU-MIA evaluates repeated computed tomography (CT) scans of the same patient to facilitate identification and evaluation of pulmonary nodules for interval growth. It provides a user-friendly graphical user interface with a number of interaction tools for development, evaluation, and validation of chest image analysis methods. The structures that BU-MIA processes include the thorax, lungs, and trachea, pulmonary structures, such as lobes, fissures, nodules, and vessels, and bones, such as sternum, vertebrae, and ribs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of analyzing performance of WWW servers. The web has experienced a phenomenal growth and has become the most popular Internet application. As a consequence of its large popularity, the Internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (i.e., documents, pictures, audio, and video) available on the net. Thus, it is important to understand WWW performance issues. This paper focuses on the performance analysis of a Web server. Using a synthetic benchmark (WebStone), we analyze three different Web server software running on top of a Windows NT platform and performing some typical WWW tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that giving preferential treatment to short jobs helps reduce the average system response time, especially when the job size distribution possesses the heavy-tailed property. Since it has been shown that the TCP flow length distribution also has the same property, it is natural to let short TCP flows enjoy better service inside the network. Analyzing such discriminatory system requires modification to traditional job scheduling models since usually network traffic managers do not have detailed knowledge about individual flows such as their lengths. The Multi-Level (ML) queue, proposed by Kleinrock, can b e used to characterize such system. In an ML queueing system, the priority of a flow is reduced as the flow stays longer. We present an approximate analysis of the ML queueing system to obtain a closed-form solution of the average system response time function for general flow size distributions. We show that the response time of short flows can be significantly reduced without penalizing long flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a type inference algorithm, in the style of compositional analysis, for the language TRAFFIC—a specification language for flow composition applications proposed in [2]—and prove that this algorithm is correct: the typings it infers are principal typings, and the typings agree with syntax-directed type checking on closed flow specifications. This algorithm is capable of verifying partial flow specifications, which is a significant improvement over syntax-directed type checking algorithm presented in [3]. We also show that this algorithm runs efficiently, i.e., in low-degree polynomial time.