8 resultados para Computational topology
em Boston University Digital Common
Resumo:
Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.
Resumo:
Wireless sensor networks are characterized by limited energy resources. To conserve energy, application-specific aggregation (fusion) of data reports from multiple sensors can be beneficial in reducing the amount of data flowing over the network. Furthermore, controlling the topology by scheduling the activity of nodes between active and sleep modes has often been used to uniformly distribute the energy consumption among all nodes by de-synchronizing their activities. We present an integrated analytical model to study the joint performance of in-network aggregation and topology control. We define performance metrics that capture the tradeoffs among delay, energy, and fidelity of the aggregation. Our results indicate that to achieve high fidelity levels under medium to high event reporting load, shorter and fatter aggregation/routing trees (toward the sink) offer the best delay-energy tradeoff as long as topology control is well coordinated with routing.
Resumo:
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has proven to be a challenging task, since it in turn involves solving difficult problems such as mapping the actual topology, characterizing it, and developing models that capture its emergent behavior. Consequently, even though there are a number of topology models, it is an open question as to how representative the topologies they generate are of the actual Internet. Our goal is to produce a topology generation framework which improves the state of the art and is based on design principles which include representativeness, inclusiveness, and interoperability. Representativeness leads to synthetic topologies that accurately reflect many aspects of the actual Internet topology (e.g. hierarchical structure, degree distribution, etc.). Inclusiveness combines the strengths of as many generation models as possible in a single generation tool. Interoperability provides interfaces to widely-used simulation and visualization applications such as ns and SSF. We call such a tool a universal topology generator. In this paper we discuss the design, implementation and usage of the BRITE universal topology generation tool that we have built. We also describe the BRITE Analysis Engine, BRIANA, which is an independent piece of software designed and built upon BRITE design goals of flexibility and extensibility. The purpose of BRIANA is to act as a repository of analysis routines along with a user–friendly interface that allows its use on different topology formats.
Resumo:
Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute studies have led some authors to conclude that the router graph of the Internet is a scale-free graph, or more generally a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a power-law tail. In this paper we argue that the evidence to date for this conclusion is at best insufficient. We show that graphs appearing to have power-law degree distributions can arise surprisingly easily, when sampling graphs whose true degree distribution is not at all like a power-law. For example, given a classical Erdös-Rényi sparse, random graph, the subgraph formed by a collection of shortest paths from a small set of random sources to a larger set of random destinations can easily appear to show a degree distribution remarkably like a power-law. We explore the reasons for how this effect arises, and show that in such a setting, edges are sampled in a highly biased manner. This insight allows us to distinguish measurements taken from the Erdös-Rényi graphs from those taken from power-law random graphs. When we apply this distinction to a number of well-known datasets, we find that the evidence for sampling bias in these datasets is strong.
Resumo:
National Science Foundation (CCR-998310); Army Research Office (DAAD19-02-1-0058)
Resumo:
Sensor applications in Sensoria [1] are expressed using STEP (Sensorium Task Execution Plan). SNAFU (Sensor-Net Applications as Functional Units) serves as a high-level sensor-programming language, which is compiled into STEP. In SNAFU’s current form, its differences with STEP are relatively minor, as they are limited to shorthands and macros not available in STEP. We show that, however restrictive it may seem, SNAFU has in fact universal power; technically, it is a Turing-complete language, i.e., any Turing program can be written in SNAFU (though not always conveniently). Although STEP may be allowed to have universal power, as a low-level language not directly available to Sensorium users, SNAFU programmers may use this power for malicious purposes or inadvertently introduce errors with destructive consequences. In future developments of SNAFU, we plan to introduce restrictions and highlevel features with safety guards, such as those provided by a type system, which will make SNAFU programming safer.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.