2 resultados para Compound muscle action potential

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To identify differences between manufacturing firms in Nigeria that have undertaken HIV/AIDS prevention activities and those that have not as a step toward improving the targeting of HIV policies and interventions. Methods: A survey of a representative sample of registered manufacturing firms in Nigeria, stratified by location, workforce size, and industrial sector. The survey was administered to managers of 232 firms representing most major industrial areas and sectors in March-April 2001. Results: 45.3 percent of the firms’ managers received information about HIV/AIDS from a source outside the firm in 2000; 7.7 percent knew of an employee who was HIV-positive at the time of the survey; and 13.6 percent knew of an employee who had left the firm and/or died in service due to AIDS. Only 31.7 percent of firms took any action to prevent HIV among employees in 2000, and 23.9 percent had discussed the epidemic as a potential business concern. The best correlates of having taken action on HIV were knowledge of an HIV-positive employee or having lost an employee to AIDS (odds ratio [OR] 6.36, 95% confidence interval [CI]: 2.30, 17.57) and receiving information about the disease from an outside source (OR 7.83, 95% CI: 3.46, 17.69). Conclusions: Despite a nationwide HIV seroprevalence of 5.8 percent, as of 2001 most Nigerian manufacturing firm managers did not regard HIV/AIDS as a serious problem and had neither taken any action on it nor discussed it as a business issue. Providing managers with accurate, relevant information about the epidemic and practical prevention interventions might strengthen the business response to AIDS in countries like Nigeria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.