1 resultado para Compact subsets
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (61)
- CentAUR: Central Archive University of Reading - UK (14)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (45)
- Cochin University of Science & Technology (CUSAT), India (64)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (29)
- Indian Institute of Science - Bangalore - Índia (126)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (15)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (87)
- Queensland University of Technology - ePrints Archive (185)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de El Salvador (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (5)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (95)
- University of Queensland eSpace - Australia (17)
- WestminsterResearch - UK (12)
Resumo:
We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.