3 resultados para Columbite and rietveld method
em Boston University Digital Common
Resumo:
Extensible systems allow services to be configured and deployed for the specific needs of individual applications. This paper describes a safe and efficient method for user-level extensibility that requires only minimal changes to the kernel. A sandboxing technique is described that supports multiple logical protection domains within the same address space at user-level. This approach allows applications to register sandboxed code with the system, that may be executed in the context of any process. Our approach differs from other implementations that require special hardware support, such as segmentation or tagged translation look-aside buffers (TLBs), to either implement multiple protection domains in a single address space, or to support fast switching between address spaces. Likewise, we do not require the entire system to be written in a type-safe language, to provide fine-grained protection domains. Instead, our user-level sandboxing technique requires only paged-based virtual memory support, and the requirement that extension code is written either in a type-safe language, or by a trusted source. Using a fast method of upcalls, we show how our sandboxing technique for implementing logical protection domains provides significant performance improvements over traditional methods of invoking user-level services. Experimental results show our approach to be an efficient method for extensibility, with inter-protection domain communication costs close to those of hardware-based solutions leveraging segmentation.
Resumo:
A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
Resumo:
A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.