1 resultado para Co-occurrence analysis
em Boston University Digital Common
Filtro por publicador
- University of Cagliari UniCA Eprints (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (17)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (23)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- Bioline International (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Boston University Digital Common (1)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (74)
- Cochin University of Science & Technology (CUSAT), India (7)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (16)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (27)
- Indian Institute of Science - Bangalore - Índia (116)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (15)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- Publishing Network for Geoscientific & Environmental Data (21)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (82)
- Queensland University of Technology - ePrints Archive (163)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (53)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Handshape is a key articulatory parameter in sign language, and thus handshape recognition from signing video is essential for sign recognition and retrieval. Handshape transitions within monomorphemic lexical signs (the largest class of signs in signed languages) are governed by phonological rules. For example, such transitions normally involve either closing or opening of the hand (i.e., to exclusively use either folding or unfolding of the palm and one or more fingers). Furthermore, akin to allophonic variations in spoken languages, both inter- and intra- signer variations in the production of specific handshapes are observed. We propose a Bayesian network formulation to exploit handshape co-occurrence constraints, also utilizing information about allophonic variations to aid in handshape recognition. We propose a fast non-rigid image alignment method to gain improved robustness to handshape appearance variations during computation of observation likelihoods in the Bayesian network. We evaluate our handshape recognition approach on a large dataset of monomorphemic lexical signs. We demonstrate that leveraging linguistic constraints on handshapes results in improved handshape recognition accuracy. As part of the overall project, we are collecting and preparing for dissemination a large corpus (three thousand signs from three native signers) of American Sign Language (ASL) video. The video have been annotated using SignStream® [Neidle et al.] with labels for linguistic information such as glosses, morphological properties and variations, and start/end handshapes associated with each ASL sign.