2 resultados para Classical languages
em Boston University Digital Common
Resumo:
We present a type system, StaXML, which employs the stacked type syntax to represent essential aspects of the potential roles of XML fragments to the structure of complete XML documents. The simplest application of this system is to enforce well-formedness upon the construction of XML documents without requiring the use of templates or balanced "gap plugging" operators; this allows it to be applied to programs written according to common imperative web scripting idioms, particularly the echoing of unbalanced XML fragments to an output buffer. The system can be extended to verify particular XML applications such as XHTML and identifying individual XML tags constructed from their lexical components. We also present StaXML for PHP, a prototype precompiler for the PHP4 scripting language which infers StaXML types for expressions without assistance from the programmer.
Resumo:
We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.