1 resultado para Change of behaviour
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (22)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (1)
- Brock University, Canada (10)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (257)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (12)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (8)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (22)
- Indian Institute of Science - Bangalore - Índia (79)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Publishing Network for Geoscientific & Environmental Data (16)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (99)
- Queensland University of Technology - ePrints Archive (137)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (7)
- Universidade de Madeira (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.