9 resultados para Chance-constrained optimisation
em Boston University Digital Common
Resumo:
This paper describes an algorithm for scheduling packets in real-time multimedia data streams. Common to these classes of data streams are service constraints in terms of bandwidth and delay. However, it is typical for real-time multimedia streams to tolerate bounded delay variations and, in some cases, finite losses of packets. We have therefore developed a scheduling algorithm that assumes streams have window-constraints on groups of consecutive packet deadlines. A window-constraint defines the number of packet deadlines that can be missed in a window of deadlines for consecutive packets in a stream. Our algorithm, called Dynamic Window-Constrained Scheduling (DWCS), attempts to guarantee no more than x out of a window of y deadlines are missed for consecutive packets in real-time and multimedia streams. Using DWCS, the delay of service to real-time streams is bounded even when the scheduler is overloaded. Moreover, DWCS is capable of ensuring independent delay bounds on streams, while at the same time guaranteeing minimum bandwidth utilizations over tunable and finite windows of time. We show the conditions under which the total demand for link bandwidth by a set of real-time (i.e., window-constrained) streams can exceed 100% and still ensure all window-constraints are met. In fact, we show how it is possible to guarantee worst-case per-stream bandwidth and delay constraints while utilizing all available link capacity. Finally, we show how best-effort packets can be serviced with fast response time, in the presence of window-constrained traffic.
Resumo:
Current research on Internet-based distributed systems emphasizes the scalability of overlay topologies for efficient search and retrieval of data items, as well as routing amongst peers. However, most existing approaches fail to address the transport of data across these logical networks in accordance with quality of service (QoS) constraints. Consequently, this paper investigates the use of scalable overlay topologies for routing real-time media streams between publishers and potentially many thousands of subscribers. Specifically, we analyze the costs of using k-ary n-cubes for QoS-constrained routing. Given a number of nodes in a distributed system, we calculate the optimal k-ary n-cube structure for minimizing the average distance between any pair of nodes. Using this structure, we describe a greedy algorithm that selects paths between nodes in accordance with the real-time delays along physical links. We show this method improves the routing latencies by as much as 67%, compared to approaches that do not consider physical link costs. We are in the process of developing a method for adaptive node placement in the overlay topology, based upon the locations of publishers, subscribers, physical link costs and per-subscriber QoS constraints. One such method for repositioning nodes in logical space is discussed, to improve the likelihood of meeting service requirements on data routed between publishers and subscribers. Future work will evaluate the benefits of such techniques more thoroughly.
Resumo:
This paper presents a new approach to window-constrained scheduling, suitable for multimedia and weakly-hard real-time systems. We originally developed an algorithm, called Dynamic Window-Constrained Scheduling (DWCS), that attempts to guarantee no more than x out of y deadlines are missed for real-time jobs such as periodic CPU tasks, or delay-constrained packet streams. While DWCS is capable of generating a feasible window-constrained schedule that utilizes 100% of resources, it requires all jobs to have the same request periods (or intervals between successive service requests). We describe a new algorithm called Virtual Deadline Scheduling (VDS), that provides window-constrained service guarantees to jobs with potentially different request periods, while still maximizing resource utilization. VDS attempts to service m out of k job instances by their virtual deadlines, that may be some finite time after the corresponding real-time deadlines. Notwithstanding, VDS is capable of outperforming DWCS and similar algorithms, when servicing jobs with potentially different request periods. Additionally, VDS is able to limit the extent to which a fraction of all job instances are serviced late. Results from simulations show that VDS can provide better window-constrained service guarantees than other related algorithms, while still having as good or better delay bounds for all scheduled jobs. Finally, an implementation of VDS in the Linux kernel compares favorably against DWCS for a range of scheduling loads.
Resumo:
Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance.
Resumo:
As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course.
Resumo:
Routing protocols for ad-hoc networks assume that the nodes forming the network are either under a single authority, or else that they would be altruistically forwarding data for other nodes with no expectation of a return. These assumptions are unrealistic since in ad-hoc networks, nodes are likely to be autonomous and rational (selfish), and thus unwilling to help unless they have an incentive to do so. Providing such incentives is an important aspect that should be considered when designing ad-hoc routing protocols. In this paper, we propose a dynamic, decentralized routing protocol for ad-hoc networks that provides incentives in the form of payments to intermediate nodes used to forward data for others. In our Constrained Selfish Routing (CSR) protocol, game-theoretic approaches are used to calculate payments (incentives) that ensure both the truthfulness of participating nodes and the fairness of the CSR protocol. We show through simulations that CSR is an energy efficient protocol and that it provides lower communication overhead in the best and average cases compared to existing approaches.
Resumo:
Research on the construction of logical overlay networks has gained significance in recent times. This is partly due to work on peer-to-peer (P2P) systems for locating and retrieving distributed data objects, and also scalable content distribution using end-system multicast techniques. However, there are emerging applications that require the real-time transport of data from various sources to potentially many thousands of subscribers, each having their own quality-of-service (QoS) constraints. This paper primarily focuses on the properties of two popular topologies found in interconnection networks, namely k-ary n-cubes and de Bruijn graphs. The regular structure of these graph topologies makes them easier to analyze and determine possible routes for real-time data than complete or irregular graphs. We show how these overlay topologies compare in their ability to deliver data according to the QoS constraints of many subscribers, each receiving data from specific publishing hosts. Comparisons are drawn on the ability of each topology to route data in the presence of dynamic system effects, due to end-hosts joining and departing the system. Finally, experimental results show the service guarantees and physical link stress resulting from efficient multicast trees constructed over both kinds of overlay networks.
Resumo:
Overlay networks have become popular in recent times for content distribution and end-system multicasting of media streams. In the latter case, the motivation is based on the lack of widespread deployment of IP multicast and the ability to perform end-host processing. However, constructing routes between various end-hosts, so that data can be streamed from content publishers to many thousands of subscribers, each having their own QoS constraints, is still a challenging problem. First, any routes between end-hosts using trees built on top of overlay networks can increase stress on the underlying physical network, due to multiple instances of the same data traversing a given physical link. Second, because overlay routes between end-hosts may traverse physical network links more than once, they increase the end-to-end latency compared to IP-level routing. Third, algorithms for constructing efficient, large-scale trees that reduce link stress and latency are typically more complex. This paper therefore compares various methods to construct multicast trees between end-systems, that vary in terms of implementation costs and their ability to support per-subscriber QoS constraints. We describe several algorithms that make trade-offs between algorithmic complexity, physical link stress and latency. While no algorithm is best in all three cases we show how it is possible to efficiently build trees for several thousand subscribers with latencies within a factor of two of the optimal, and link stresses comparable to, or better than, existing technologies.
Resumo:
In the framework of iBench research project, our previous work created a domain specific language TRAFFIC [6] that facilitates specification, programming, and maintenance of distributed applications over a network. It allows safety property to be formalized in terms of types and subtyping relations. Extending upon our previous work, we add Hindley-Milner style polymorphism [8] with constraints [9] to the type system of TRAFFIC. This allows a programmer to use for-all quantifier to describe types of network components, escalating power and expressiveness of types to a new level that was not possible before with propositional subtyping relations. Furthermore, we design our type system with a pluggable constraint system, so it can adapt to different application needs while maintaining soundness. In this paper, we show the soundness of the type system, which is not syntax-directed but is easier to do typing derivation. We show that there is an equivalent syntax-directed type system, which is what a type checker program would implement to verify the safety of a network flow. This is followed by discussion on several constraint systems: polymorphism with subtyping constraints, Linear Programming, and Constraint Handling Rules (CHR) [3]. Finally, we provide some examples to illustrate workings of these constraint systems.