4 resultados para Catholic Church. 1801 July 15.
em Boston University Digital Common
Resumo:
http://www.archive.org/details/missionofthechur013324mbp
Resumo:
http://www.archive.org/details/catholicgrieva00mealrich
Resumo:
http://www.archive.org/details/theparishpriesto00heusuoft
Resumo:
The popularity of TCP/IP coupled with the premise of high speed communication using Asynchronous Transfer Mode (ATM) technology have prompted the network research community to propose a number of techniques to adapt TCP/IP to ATM network environments. ATM offers Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) services for best-effort traffic, such as conventional file transfer. However, recent studies have shown that TCP/IP, when implemented using ABR or UBR, leads to serious performance degradations, especially when the utilization of network resources (such as switch buffers) is high. Proposed techniques-switch-level enhancements, for example-that attempt to patch up TCP/IP over ATMs have had limited success in alleviating this problem. The major reason for TCP/IP's poor performance over ATMs has been consistently attributed to packet fragmentation, which is the result of ATM's 53-byte cell-oriented switching architecture. In this paper, we present a new transport protocol, TCP Boston, that turns ATM's 53-byte cell-oriented switching architecture into an advantage for TCP/IP. At the core of TCP Boston is the Adaptive Information Dispersal Algorithm (AIDA), an efficient encoding technique that allows for dynamic redundancy control. AIDA makes TCP/IP's performance less sensitive to cell losses, thus ensuring a graceful degradation of TCP/IP's performance when faced with congested resources. In this paper, we introduce AIDA and overview the main features of TCP Boston. We present detailed simulation results that show the superiority of our protocol when compared to other adaptations of TCP/IP over ATMs. In particular, we show that TCP Boston improves TCP/IP's performance over ATMs for both network-centric metrics (e.g., effective throughput) and application-centric metrics (e.g., response time).