293 resultados para Cataloging of technical reports.

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speculative Concurrency Control (SCC) [Best92a] is a new concurrency control approach especially suited for real-time database applications. It relies on the use of redundancy to ensure that serializable schedules are discovered and adopted as early as possible, thus increasing the likelihood of the timely commitment of transactions with strict timing constraints. In [Best92b], SCC-nS, a generic algorithm that characterizes a family of SCC-based algorithms was described, and its correctness established by showing that it only admits serializable histories. In this paper, we evaluate the performance of the Two-Shadow SCC algorithm (SCC-2S), a member of the SCC-nS family, which is notable for its minimal use of redundancy. In particular, we show that SCC-2S (as a representative of SCC-based algorithms) provides significant performance gains over the widely used Optimistic Concurrency Control with Broadcast Commit (OCC-BC), under a variety of operating conditions and workloads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swiss National Science Foundation; Austrian Federal Ministry of Science and Research; Deutsche Forschungsgemeinschaft (SFB 314); Christ Church, Oxford; Oxford University Computing Laboratory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent shared memory is a convenient, but inefficient, method of inter-process communication for parallel programs. By contrast, message passing can be less convenient, but more efficient. To get the benefits of both models, several non-coherent memory behaviors have recently been proposed in the literature. We present an implementation of Mermera, a shared memory system that supports both coherent and non-coherent behaviors in a manner that enables programmers to mix multiple behaviors in the same program[HS93]. A programmer can debug a Mermera program using coherent memory, and then improve its performance by selectively reducing the level of coherence in the parts that are critical to performance. Mermera permits a trade-off of coherence for performance. We analyze this trade-off through measurements of our implementation, and by an example that illustrates the style of programming needed to exploit non-coherence. We find that, even on a small network of workstations, the performance advantage of non-coherence is compelling. Raw non-coherent memory operations perform 20-40~times better than non-coherent memory operations. An example application program is shown to run 5-11~times faster when permitted to exploit non-coherence. We conclude by commenting on our use of the Isis Toolkit of multicast protocols in implementing Mermera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the efficient learnability of unions of k rectangles in the discrete plane (1,...,n)[2] with equivalence and membership queries. We exhibit a learning algorithm that learns any union of k rectangles with O(k^3log n) queries, while the time complexity of this algorithm is bounded by O(k^5log n). We design our learning algorithm by finding "corners" and "edges" for rectangles contained in the target concept and then constructing the target concept from those "corners" and "edges". Our result provides a first approach to on-line learning of nontrivial subclasses of unions of intersections of halfspaces with equivalence and membership queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various restrictions on the terms allowed for substitution give rise to different cases of semi-unification. Semi-unification on finite and regular terms has already been considered in the literature. We introduce a general case of semi-unification where substitutions are allowed on non-regular terms, and we prove the equivalence of this general case to a well-known undecidable data base dependency problem, thus establishing the undecidability of general semi-unification. We present a unified way of looking at the various problems of semi-unification. We give some properties that are common to all the cases of semi-unification. We also the principality property and the solution set for those problems. We prove that semi-unification on general terms has the principality property. Finally, we present a recursive inseparability result between semi-unification on regular terms and semi-unification on general terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish the equivalence of type reconstruction with polymorphic recursion and recursive types is equivalent to regular semi-unification which proves the undecidability of the corresponding type reconstruction problem. We also establish the equivalence of type reconstruction with polymorphic recursion and positive recursive types to a special case of regular semi-unification which we call positive regular semi-unification. The decidability of positive regular semi-unification is an open problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a randomized version of the subgraph-exclusion algorithm (called Ramsey) for CLIQUE by Boppana and Halldorsson is studied on very large graphs. We compare the performance of this algorithm with the performance of two common heuristic algorithms, the greedy heuristic and a version of simulated annealing. These algorithms are tested on graphs with up to 10,000 vertices on a workstation and graphs as large as 70,000 vertices on a Connection Machine. Our implementations establish the ability to run clique approximation algorithms on very large graphs. We test our implementations on a variety of different graphs. Our conclusions indicate that on randomly generated graphs minor changes to the distribution can cause dramatic changes in the performance of the heuristic algorithms. The Ramsey algorithm, while not as good as the others for the most common distributions, seems more robust and provides a more even overall performance. In general, and especially on deterministically generated graphs, a combination of simulated annealing with either the Ramsey algorithm or the greedy heuristic seems to perform best. This combined algorithm works particularly well on large Keller and Hamming graphs and has a competitive overall performance on the DIMACS benchmark graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictability — the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is a formalism that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Unrealistic systems — possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing — cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new notions of reduction for terms of the λ-calculus are introduced and the question of whether a λ-term is beta-strongly normalizing is reduced to the question of whether a λ-term is merely normalizing under one of the new notions of reduction. This leads to a new way to prove beta-strong normalization for typed λ-calculi. Instead of the usual semantic proof style based on Girard's "candidats de réductibilité'', termination can be proved using a decreasing metric over a well-founded ordering in a style more common in the field of term rewriting. This new proof method is applied to the simply-typed λ-calculus and the system of intersection types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonrigid motion can be described as morphing or blending between extremal shapes, e.g., heart motion can be described as transitioning between the systole and diastole states. Using physically-based modeling techniques, shape similarity can be measured in terms of forces and strain. This provides a physically-based coordinate system in which motion is characterized in terms of physical similarity to a set of extremal shapes. Having such a low-dimensional characterization of nonrigid motion allows for the recognition and the comparison of different types of nonrigid motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the efficacy of genetic algorithms in the context of combinatorial optimization. In particular, we isolate the effects of cross-over, treated as the central component of genetic search. We show that for problems of nontrivial size and difficulty, the contribution of cross-over search is marginal, both synergistically when run in conjunction with mutation and selection, or when run with selection alone, the reference point being the search procedure consisting of just mutation and selection. The latter can be viewed as another manifestation of the Metropolis process. Considering the high computational cost of maintaining a population to facilitate cross-over search, its marginal benefit renders genetic search inferior to its singleton-population counterpart, the Metropolis process, and by extension, simulated annealing. This is further compounded by the fact that many problems arising in practice may inherently require a large number of state transitions for a near-optimal solution to be found, making genetic search infeasible given the high cost of computing a single iteration in the enlarged state-space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores reasons for the high degree of variability in the sizes of ASes that have recently been observed, and the processes by which this variable distribution develops. AS size distribution is important for a number of reasons. First, when modeling network topologies, an AS size distribution assists in labeling routers with an associated AS. Second, AS size has been found to be positively correlated with the degree of the AS (number of peering links), so understanding the distribution of AS sizes has implications for AS connectivity properties. Our model accounts for AS births, growth, and mergers. We analyze two models: one incorporates only the growth of hosts and ASes, and a second extends that model to include mergers of ASes. We show analytically that, given reasonable assumptions about the nature of mergers, the resulting size distribution exhibits a power law tail with the exponent independent of the details of the merging process. We estimate parameters of the models from measurements obtained from Internet registries and from BGP tables. We then compare the models solutions to empirical AS size distribution taken from Mercator and Skitter datasets, and find that the simple growth-based model yields general agreement with empirical data. Our analysis of the model in which mergers occur in a manner independent of the size of the merging ASes suggests that more detailed analysis of merger processes is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A well-known paradigm for load balancing in distributed systems is the``power of two choices,''whereby an item is stored at the less loaded of two (or more) random alternative servers. We investigate the power of two choices in natural settings for distributed computing where items and servers reside in a geometric space and each item is associated with the server that is its nearest neighbor. This is in fact the backdrop for distributed hash tables such as Chord, where the geometric space is determined by clockwise distance on a one-dimensional ring. Theoretically, we consider the following load balancing problem. Suppose that servers are initially hashed uniformly at random to points in the space. Sequentially, each item then considers d candidate insertion points also chosen uniformly at random from the space,and selects the insertion point whose associated server has the least load. For the one-dimensional ring, and for Euclidean distance on the two-dimensional torus, we demonstrate that when n data items are hashed to n servers,the maximum load at any server is log log n / log d + O(1) with high probability. While our results match the well-known bounds in the standard setting in which each server is selected equiprobably, our applications do not have this feature, since the sizes of the nearest-neighbor regions around servers are non-uniform. Therefore, the novelty in our methods lies in developing appropriate tail bounds on the distribution of nearest-neighbor region sizes and in adapting previous arguments to this more general setting. In addition, we provide simulation results demonstrating the load balance that results as the system size scales into the millions.