5 resultados para Casanova, Giacomo, 1725-1798.
em Boston University Digital Common
Resumo:
http://www.archive.org/details/memoirofmrsannhj00judsuoft
Resumo:
http://www.archive.org/details/accountoflifeofm00brairich
Resumo:
http://www.archive.org/details/proposalforbette00berkrich
Resumo:
We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.
Resumo:
For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.