3 resultados para Camus, Mario
em Boston University Digital Common
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
A fast and efficient segmentation algorithm based on the Boundary Contour System/Feature Contour System (BCS/FCS) of Grossberg and Mingolla [3] is presented. This implementation is based on the FFT algorithm and the parallelism of the system.
Resumo:
A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.