2 resultados para Cahill, Lou

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TCP/IP architecture was originally designed without taking security measures into consideration. Over the years, it has been subjected to many attacks, which has led to many patches to counter them. Our investigations into the fundamental principles of networking have shown that carefully following an abstract model of Interprocess Communication (IPC) addresses many problems [1]. Guided by this IPC principle, we designed a clean-slate Recursive INternet Architecture (RINA) [2]. In this paper, we show how, without the aid of cryptographic techniques, the bare-bones architecture of RINA can resist most of the security attacks faced by TCP/IP. We also show how hard it is for an intruder to compromise RINA. Then, we show how RINA inherently supports security policies in a more manageable, on-demand basis, in contrast to the rigid, piecemeal approach of TCP/IP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.