7 resultados para CONTENT
em Boston University Digital Common
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.
Resumo:
Content providers often consider the costs of security to be greater than the losses they might incur without it; many view "casual piracy" as their main concern. Our goal is to provide a low cost defense against such attacks while maintaining rigorous security guarantees. Our defense is integrated with and leverages fast forward error correcting codes, such as Tornado codes, which are widely used to facilitate reliable delivery of rich content. We tune one such family of codes - while preserving their original desirable properties - to guarantee that none of the original content can b e recovered whenever a key subset of encoded packets is missing. Ultimately we encrypt only these key codewords (only 4% of all transmissions), making the security overhead negligible.
Resumo:
Overlay networks have emerged as a powerful and highly flexible method for delivering content. We study how to optimize throughput of large, multipoint transfers across richly connected overlay networks, focusing on the question of what to put in each transmitted packet. We first make the case for transmitting encoded content in this scenario, arguing for the digital fountain approach which enables end-hosts to efficiently restitute the original content of size n from a subset of any n symbols from a large universe of encoded symbols. Such an approach affords reliability and a substantial degree of application-level flexibility, as it seamlessly tolerates packet loss, connection migration, and parallel transfers. However, since the sets of symbols acquired by peers are likely to overlap substantially, care must be taken to enable them to collaborate effectively. We provide a collection of useful algorithmic tools for efficient estimation, summarization, and approximate reconciliation of sets of symbols between pairs of collaborating peers, all of which keep messaging complexity and computation to a minimum. Through simulations and experiments on a prototype implementation, we demonstrate the performance benefits of our informed content delivery mechanisms and how they complement existing overlay network architectures.
Resumo:
Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.
Resumo:
Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.
Resumo:
We propose a new technique for efficiently delivering popular content from information repositories with bounded file caches. Our strategy relies on the use of fast erasure codes (a.k.a. forward error correcting codes) to generate encodings of popular files, of which only a small sliding window is cached at any time instant, even to satisfy an unbounded number of asynchronous requests for the file. Our approach capitalizes on concurrency to maximize sharing of state across different request threads while minimizing cache memory utilization. Additional reduction in resource requirements arises from providing for a lightweight version of the network stack. In this paper, we describe the design and implementation of our Cyclone server as a Linux kernel subsystem.
Resumo:
In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.