2 resultados para CARA utility function

em Boston University Digital Common


Relevância:

80.00% 80.00%

Publicador:

Resumo:

TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a mobile sensor network monitoring a spatio-temporal field. Given limited cache sizes at the sensor nodes, the goal is to develop a distributed cache management algorithm to efficiently answer queries with a known probability distribution over the spatial dimension. First, we propose a novel distributed information theoretic approach in which the nodes locally update their caches based on full knowledge of the space-time distribution of the monitored phenomenon. At each time instant, local decisions are made at the mobile nodes concerning which samples to keep and whether or not a new sample should be acquired at the current location. These decisions account for minimizing an entropic utility function that captures the average amount of uncertainty in queries given the probability distribution of query locations. Second, we propose a different correlation-based technique, which only requires knowledge of the second-order statistics, thus relaxing the stringent constraint of having a priori knowledge of the query distribution, while significantly reducing the computational overhead. It is shown that the proposed approaches considerably improve the average field estimation error by maintaining efficient cache content. It is further shown that the correlation-based technique is robust to model mismatch in case of imperfect knowledge of the underlying generative correlation structure.