5 resultados para Breeding value
em Boston University Digital Common
Resumo:
This is a draft 2 of a discussion paper written for Boston University Libraries
Resumo:
A problem with Speculative Concurrency Control algorithms and other common concurrency control schemes using forward validation is that committing a transaction as soon as it finishes validating, may result in a value loss to the system. Haritsa showed that by making a lower priority transaction wait after it is validated, the number of transactions meeting their deadlines is increased, which may result in a higher value-added to the system. SCC-based protocols can benefit from the introduction of such delays by giving optimistic shadows with high value-added to the system more time to execute and commit instead of being aborted in favor of other validating transactions, whose value-added to the system is lower. In this paper we present and evaluate an extension to SCC algorithms that allows for commit deferments.
Resumo:
Attributing a dollar value to a keyword is an essential part of running any profitable search engine advertising campaign. When an advertiser has complete control over the interaction with and monetization of each user arriving on a given keyword, the value of that term can be accurately tracked. However, in many instances, the advertiser may monetize arrivals indirectly through one or more third parties. In such cases, it is typical for the third party to provide only coarse-grained reporting: rather than report each monetization event, users are aggregated into larger channels and the third party reports aggregate information such as total daily revenue for each channel. Examples of third parties that use channels include Amazon and Google AdSense. In such scenarios, the number of channels is generally much smaller than the number of keywords whose value per click (VPC) we wish to learn. However, the advertiser has flexibility as to how to assign keywords to channels over time. We introduce the channelization problem: how do we adaptively assign keywords to channels over the course of multiple days to quickly obtain accurate VPC estimates of all keywords? We relate this problem to classical results in weighing design, devise new adaptive algorithms for this problem, and quantify the performance of these algorithms experimentally. Our results demonstrate that adaptive weighing designs that exploit statistics of term frequency, variability in VPCs across keywords, and flexible channel assignments over time provide the best estimators of keyword VPCs.
Resumo:
We present a procedure to infer a typing for an arbitrary λ-term M in an intersection-type system that translates into exactly the call-by-name (resp., call-by-value) evaluation of M. Our framework is the recently developed System E which augments intersection types with expansion variables. The inferred typing for M is obtained by setting up a unification problem involving both type variables and expansion variables, which we solve with a confluent rewrite system. The inference procedure is compositional in the sense that typings for different program components can be inferred in any order, and without knowledge of the definition of other program components. Using expansion variables lets us achieve a compositional inference procedure easily. Termination of the procedure is generally undecidable. The procedure terminates and returns a typing if the input M is normalizing according to call-by-name (resp., call-by-value). The inferred typing is exact in the sense that the exact call-by-name (resp., call-by-value) behaviour of M can be obtained by a (polynomial) transformation of the typing. The inferred typing is also principal in the sense that any other typing that translates the call-by-name (resp., call-by-value) evaluation of M can be obtained from the inferred typing for M using a substitution-based transformation.
Resumo:
Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.