3 resultados para Brane Dynamics in Gauge Theories
em Boston University Digital Common
Resumo:
Oceanic bubble plumes caused by ship wakes or breaking waves disrupt sonar communi- cation because of the dramatic change in sound speed and attenuation in the bubbly fluid. Experiments in bubbly fluids have suffered from the inability to quantitatively characterize the fluid because of continuous air bubble motion. Conversely, single bubble experiments, where the bubble is trapped by a pressure field or stabilizing object, are limited in usable frequency range, apparatus complexity, or the invasive nature of the stabilizing object (wire, plate, etc.). Suspension of a bubble in a viscoelastic Xanthan gel allows acoustically forced oscilla- tions with negligible translation over a broad frequency band. Assuming only linear, radial motion, laser scattering from a bubble oscillating below, through, and above its resonance is measured. As the bubble dissolves in the gel, different bubble sizes are measured in the range 240 – 470 μm radius, corresponding to the frequency range 6 – 14 kHz. Equalization of the cell response in the raw data isolates the frequency response of the bubble. Compari- son to theory for a bubble in water shows good agreement between the predicted resonance frequency and damping, such that the bubble behaves as if it were oscillating in water.
Resumo:
In this paper, two methods for constructing systems of ordinary differential equations realizing any fixed finite set of equilibria in any fixed finite dimension are introduced; no spurious equilibria are possible for either method. By using the first method, one can construct a system with the fewest number of equilibria, given a fixed set of attractors. Using a strict Lyapunov function for each of these differential equations, a large class of systems with the same set of equilibria is constructed. A method of fitting these nonlinear systems to trajectories is proposed. In addition, a general method which will produce an arbitrary number of periodic orbits of shapes of arbitrary complexity is also discussed. A more general second method is given to construct a differential equation which converges to a fixed given finite set of equilibria. This technique is much more general in that it allows this set of equilibria to have any of a large class of indices which are consistent with the Morse Inequalities. It is clear that this class is not universal, because there is a large class of additional vector fields with convergent dynamics which cannot be constructed by the above method. The easiest way to see this is to enumerate the set of Morse indices which can be obtained by the above method and compare this class with the class of Morse indices of arbitrary differential equations with convergent dynamics. The former set of indices are a proper subclass of the latter, therefore, the above construction cannot be universal. In general, it is a difficult open problem to construct a specific example of a differential equation with a given fixed set of equilibria, permissible Morse indices, and permissible connections between stable and unstable manifolds. A strict Lyapunov function is given for this second case as well. This strict Lyapunov function as above enables construction of a large class of examples consistent with these more complicated dynamics and indices. The determination of all the basins of attraction in the general case for these systems is also difficult and open.
Resumo:
We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.