4 resultados para Blocking
em Boston University Digital Common
Resumo:
This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet.
Resumo:
Various concurrency control algorithms differ in the time when conflicts are detected, and in the way they are resolved. In that respect, the Pessimistic and Optimistic Concurrency Control (PCC and OCC) alternatives represent two extremes. PCC locking protocols detect conflicts as soon as they occur and resolve them using blocking. OCC protocols detect conflicts at transaction commit time and resolve them using rollbacks (restarts). For real-time databases, blockages and rollbacks are hazards that increase the likelihood of transactions missing their deadlines. We propose a Speculative Concurrency Control (SCC) technique that minimizes the impact of blockages and rollbacks. SCC relies on the use of added system resources to speculate on potential serialization orders and to ensure that if such serialization orders materialize, the hazards of blockages and roll-backs are minimized. We present a number of SCC-based algorithms that differ in the level of speculation they introduce, and the amount of system resources (mainly memory) they require. We show the performance gains (in terms of number of satisfied timing constraints) to be expected when a representative SCC algorithm (SCC-2S) is adopted.
Resumo:
The SafeWeb anonymizing system has been lauded by the press and loved by its users; self-described as "the most widely used online privacy service in the world," it served over 3,000,000 page views per day at its peak. SafeWeb was designed to defeat content blocking by firewalls and to defeat Web server attempts to identify users, all without degrading Web site behavior or requiring users to install specialized software. In this article we describe how these fundamentally incompatible requirements were realized in SafeWeb's architecture, resulting in spectacular failure modes under simple JavaScript attacks. These exploits allow adversaries to turn SafeWeb into a weapon against its users, inflicting more damage on them than would have been possible if they had never relied on SafeWeb technology. By bringing these problems to light, we hope to remind readers of the chasm that continues to separate popular and technical notions of security.
Resumo:
A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.