2 resultados para Bifurcation diagram

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural pattern generator based upon a non-linear cooperative-competitive feedback neural network is presented. It can generate the two standard human gaits: the walk and the run. A scalar arousal or GO signal causes a bifurcation from one gait to the next. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform shapes. The fraction of cycle that activity is above threshold distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run.