2 resultados para Bid Premium

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Google AdSense Program is a successful internet advertisement program where Google places contextual adverts on third-party websites and shares the resulting revenue with each publisher. Advertisers have budgets and bid on ad slots while publishers set reserve prices for the ad slots on their websites. Following previous modelling efforts, we model the program as a two-sided market with advertisers on one side and publishers on the other. We show a reduction from the Generalised Assignment Problem (GAP) to the problem of computing the revenue maximising allocation and pricing of publisher slots under a first-price auction. GAP is APX-hard but a (1-1/e) approximation is known. We compute truthful and revenue-maximizing prices and allocation of ad slots to advertisers under a second-price auction. The auctioneer's revenue is within (1-1/e) second-price optimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.