3 resultados para Biases
em Boston University Digital Common
Resumo:
Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute studies have led some authors to conclude that the router graph of the Internet is a scale-free graph, or more generally a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a power-law tail. In this paper we argue that the evidence to date for this conclusion is at best insufficient. We show that graphs appearing to have power-law degree distributions can arise surprisingly easily, when sampling graphs whose true degree distribution is not at all like a power-law. For example, given a classical Erdös-Rényi sparse, random graph, the subgraph formed by a collection of shortest paths from a small set of random sources to a larger set of random destinations can easily appear to show a degree distribution remarkably like a power-law. We explore the reasons for how this effect arises, and show that in such a setting, edges are sampled in a highly biased manner. This insight allows us to distinguish measurements taken from the Erdös-Rényi graphs from those taken from power-law random graphs. When we apply this distinction to a number of well-known datasets, we find that the evidence for sampling bias in these datasets is strong.
Resumo:
To investigate the process underlying audiovisual speech perception, the McGurk illusion was examined across a range of phonetic contexts. Two major changes were found. First, the frequency of illusory /g/ fusion percepts increased relative to the frequency of illusory /d/ fusion percepts as vowel context was shifted from /i/ to /a/ to /u/. This trend could not be explained by biases present in perception of the unimodal visual stimuli. However, the change found in the McGurk fusion effect across vowel environments did correspond systematically with changes in second format frequency patterns across contexts. Second, the order of consonants in illusory combination percepts was found to depend on syllable type. This may be due to differences occuring across syllable contexts in the timecourses of inputs from the two modalities as delaying the auditory track of a vowel-consonant stimulus resulted in a change in the order of consonants perceived. Taken together, these results suggest that the speech perception system either fuses audiovisual inputs into a visually compatible percept with a similar second formant pattern to that of the acoustic stimulus or interleaves the information from different modalities, at a phonemic or subphonemic level, based on their relative arrival times.
Resumo:
A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.