1 resultado para Benevent-Terratrèmols-1688
em Boston University Digital Common
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (43)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (5)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (24)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Archives@Colby (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (193)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (11)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (50)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- Queensland University of Technology - ePrints Archive (6)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (9)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (3)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (532)
Resumo:
A secure sketch (defined by Dodis et al.) is an algorithm that on an input w produces an output s such that w can be reconstructed given its noisy version w' and s. Security is defined in terms of two parameters m and m˜ : if w comes from a distribution of entropy m, then a secure sketch guarantees that the distribution of w conditioned on s has entropy m˜ , where λ = m−m˜ is called the entropy loss. In this note we show that the entropy loss of any secure sketch (or, more generally, any randomized algorithm) on any distribution is no more than it is on the uniform distribution.