4 resultados para Benefit Finding
em Boston University Digital Common
Resumo:
Missiological calls for self-theologizing among faith communities present the field of practical theology with a challenge to develop methodological approaches that address the complexities of cross-cultural, practical theological research. Although a variety of approaches can be considered critical correlative practical theology, existing methods are often built on assumptions that limit their use in subaltern contexts. This study seeks to address these concerns by analyzing existing theological methodologies with sustained attention to a community of Deaf Zimbabwean women struggling to develop their own agency in relation to child rearing practices. This dilemma serves as an entry point to an examination of the limitations of existing methodologies and a constructive, interdisciplinary theological exploration. The use of theological modeling methodology employs my experience of learning to cook sadza, a staple dish of Zimbabwe, as a guide for analyzing and reorienting practical theological methodology. The study explores a variety of theological approaches from practical theology, mission oriented theologians, theology among Deaf communities, and African women’s theology in relationship to the challenges presented by subaltern communities such as Deaf Zimbabwean women. Analysis reveals that although there is much to commend in these existing methodologies, questions about who does the critical correlation, whose interests are guiding the study, and consideration for the cross-cultural and power dynamics between researchers and faith communities remain problematic for developing self-theologizing agency. Rather than frame a comprehensive methodology, this study proposes three attitudes and guideposts to reorient practical theological researchers who wish to engender self-theologizing agency in subaltern communities. The creativity of enacted theology, the humility of using checks and balances in research methods, and the grace of finding strategies to build bridges of commonality and community offer ways to reorient practical theological methodologies toward the development of self-theologizing agency among subaltern people. This study concludes with discussion of how these guideposts can not only benefit particular work with a community of Deaf Zimbabwean women, but also provide research and theological reflection in other subaltern contexts.
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.
Resumo:
Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.
Resumo:
We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.