3 resultados para Batumi seep area

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication is a commonly proposed solution to problems of scale associated with distributed services. However, when a service is replicated, each client must be assigned a server. Prior work has generally assumed that assignment to be static. In contrast, we propose dynamic server selection, and show that it enables application-level congestion avoidance. To make dynamic server selection practical, we demonstrate the use of three tools. In addition to direct measurements of round-trip latency, we introduce and validate two new tools: bprobe, which estimates the maximum possible bandwidth along a given path; and cprobe, which estimates the current congestion along a path. Using these tools we demonstrate dynamic server selection and compare it to previous static approaches. We show that dynamic server selection consistently outperforms static policies by as much as 50%. Furthermore, we demonstrate the importance of each of our tools in performing dynamic server selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most vexing questions facing researchers interested in the World Wide Web is why users often experience long delays in document retrieval. The Internet's size, complexity, and continued growth make this a difficult question to answer. We describe the Wide Area Web Measurement project (WAWM) which uses an infrastructure distributed across the Internet to study Web performance. The infrastructure enables simultaneous measurements of Web client performance, network performance and Web server performance. The infrastructure uses a Web traffic generator to create representative workloads on servers, and both active and passive tools to measure performance characteristics. Initial results based on a prototype installation of the infrastructure are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose that a simple, closed-form mathematical expression--the Wedge-Dipole mapping--provides a concise approximation to the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex, acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge-Dipole parameters is provided via 2DG data of central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the development of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that have been in common use. One reason is that topography has traditionally supplied an important aspect of "ground truth", or validation, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition, several important insights into the nature of cortical topography follows from this work. The presence of anisotropy in cortical magnification factor is shown to follow mathematically from the shared boundary conditions at the V1-V2 and V2-V3 borders, and therefore may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge-Dipole model to localizing aspects of visual processing to specific cortical areas--extending previous work in correlating V1 cortical magnification factor to retinal anatomy or visual psychophysics data--is briefly discussed.