1 resultado para Basophil Degranulation Test -- methods
em Boston University Digital Common
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (27)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (79)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (31)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (17)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (15)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (9)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (15)
- Institutional Repository of Leibniz University Hannover (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (1)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (72)
- Queensland University of Technology - ePrints Archive (139)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (131)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universita di Parma (2)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (10)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Michigan (20)
- University of Queensland eSpace - Australia (18)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Many real world image analysis problems, such as face recognition and hand pose estimation, involve recognizing a large number of classes of objects or shapes. Large margin methods, such as AdaBoost and Support Vector Machines (SVMs), often provide competitive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus making it difficult to apply such methods when thousands or millions of classes need to be recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small number of candidate classes can be identified efficiently at the filter step, and computationally expensive large margin classifiers are used to evaluate these candidates at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS (One-vs.-All classification using Vector Search). ClassMap is an embedding-based method, works for both boosted classifiers and SVMs, and tends to map the patterns and their associated classes close to each other in a vector space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-responding OVA classifier becomes a classical vector search problem, where well-known methods can be used to gain efficiency. In our experiments, the proposed methods achieve significant speed-ups, in some cases up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers. This was achieved in hand pose recognition and face recognition systems where the number of classes ranges from 535 to 48,600.