1 resultado para Background geoquímico
em Boston University Digital Common
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (409)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (53)
- Boston University Digital Common (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (30)
- Center for Jewish History Digital Collections (11)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (39)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (23)
- Indian Institute of Science - Bangalore - Índia (10)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (17)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (39)
- Queensland University of Technology - ePrints Archive (30)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (52)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (101)
- University of Southampton, United Kingdom (9)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results.