2 resultados para Augmenting

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data streaming model provides an attractive framework for one-pass summarization of massive data sets at a single observation point. However, in an environment where multiple data streams arrive at a set of distributed observation points, sketches must be computed remotely and then must be aggregated through a hierarchy before queries may be conducted. As a result, many sketch-based methods for the single stream case do not apply directly, as either the error introduced becomes large, or because the methods assume that the streams are non-overlapping. These limitations hinder the application of these techniques to practical problems in network traffic monitoring and aggregation in sensor networks. To address this, we develop a general framework for evaluating and enabling robust computation of duplicate-sensitive aggregate functions (e.g., SUM and QUANTILE), over data produced by distributed sources. We instantiate our approach by augmenting the Count-Min and Quantile-Digest sketches to apply in this distributed setting, and analyze their performance. We conclude with experimental evaluation to validate our analysis.