12 resultados para Auditory masking
em Boston University Digital Common
Resumo:
Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.
Resumo:
A neural model of peripheral auditory processing is described and used to separate features of coarticulated vowels and consonants. After preprocessing of speech via a filterbank, the model splits into two parallel channels, a sustained channel and a transient channel. The sustained channel is sensitive to relatively stable parts of the speech waveform, notably synchronous properties of the vocalic portion of the stimulus it extends the dynamic range of eighth nerve filters using coincidence deteectors that combine operations of raising to a power, rectification, delay, multiplication, time averaging, and preemphasis. The transient channel is sensitive to critical features at the onsets and offsets of speech segments. It is built up from fast excitatory neurons that are modulated by slow inhibitory interneurons. These units are combined over high frequency and low frequency ranges using operations of rectification, normalization, multiplicative gating, and opponent processing. Detectors sensitive to frication and to onset or offset of stop consonants and vowels are described. Model properties are characterized by mathematical analysis and computer simulations. Neural analogs of model cells in the cochlear nucleus and inferior colliculus are noted, as are psychophysical data about perception of CV syllables that may be explained by the sustained transient channel hypothesis. The proposed sustained and transient processing seems to be an auditory analog of the sustained and transient processing that is known to occur in vision.
Resumo:
To investigate the process underlying audiovisual speech perception, the McGurk illusion was examined across a range of phonetic contexts. Two major changes were found. First, the frequency of illusory /g/ fusion percepts increased relative to the frequency of illusory /d/ fusion percepts as vowel context was shifted from /i/ to /a/ to /u/. This trend could not be explained by biases present in perception of the unimodal visual stimuli. However, the change found in the McGurk fusion effect across vowel environments did correspond systematically with changes in second format frequency patterns across contexts. Second, the order of consonants in illusory combination percepts was found to depend on syllable type. This may be due to differences occuring across syllable contexts in the timecourses of inputs from the two modalities as delaying the auditory track of a vowel-consonant stimulus resulted in a change in the order of consonants perceived. Taken together, these results suggest that the speech perception system either fuses audiovisual inputs into a visually compatible percept with a similar second formant pattern to that of the acoustic stimulus or interleaves the information from different modalities, at a phonemic or subphonemic level, based on their relative arrival times.
Resumo:
The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.
Resumo:
How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.
Resumo:
This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.
Resumo:
How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.
Resumo:
Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.
Resumo:
In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.
Resumo:
This article describes a neural network model capable of generating a spatial representation of the pitch of an acoustic source. Pitch is one of several auditory percepts used by humans to separate multiple sound sources in the environment from each other. The model provides a neural instantiation of a type of "harmonic sieve". It is capable of quantitatively simulating a large body of psychoacoustical data, including new data on octave shift perception.
Resumo:
A model of pitch perception, called the Spatial Pitch Network or SPINET model, is developed and analyzed. The model neurally instantiates ideas front the spectral pitch modeling literature and joins them to basic neural network signal processing designs to simulate a broader range of perceptual pitch data than previous spectral models. The components of the model arc interpreted as peripheral mechanical and neural processing stages, which arc capable of being incorporated into a larger network architecture for separating multiple sound sources in the environment. The core of the new model transforms a spectral representation of an acoustic source into a spatial distribution of pitch strengths. The SPINET model uses a weighted "harmonic sieve" whereby the strength of activation of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch perception data involving mistuned components, shifted harmonics, and various types of continuous spectra including rippled noise. It is shown how the weighting functions produce the dominance region, how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the model helps to produce noise suppression, partial masking and edge pitch. Finally, it is shown how peripheral filtering and short term energy measurements produce a model pitch estimate that is sensitive to certain component phase relationships.
Resumo:
An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing or visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greaterr persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence: due to adaptation with a stimulus of like orientation, an increase or persistence due to adaptation with a stimulus of perpendicular orientation, and an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.