2 resultados para Atomic and Ionic Dynamics in Laser

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic bubble plumes caused by ship wakes or breaking waves disrupt sonar communi- cation because of the dramatic change in sound speed and attenuation in the bubbly fluid. Experiments in bubbly fluids have suffered from the inability to quantitatively characterize the fluid because of continuous air bubble motion. Conversely, single bubble experiments, where the bubble is trapped by a pressure field or stabilizing object, are limited in usable frequency range, apparatus complexity, or the invasive nature of the stabilizing object (wire, plate, etc.). Suspension of a bubble in a viscoelastic Xanthan gel allows acoustically forced oscilla- tions with negligible translation over a broad frequency band. Assuming only linear, radial motion, laser scattering from a bubble oscillating below, through, and above its resonance is measured. As the bubble dissolves in the gel, different bubble sizes are measured in the range 240 – 470 μm radius, corresponding to the frequency range 6 – 14 kHz. Equalization of the cell response in the raw data isolates the frequency response of the bubble. Compari- son to theory for a bubble in water shows good agreement between the predicted resonance frequency and damping, such that the bubble behaves as if it were oscillating in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.