3 resultados para Aretino, Pietro, 1492-1556.
em Boston University Digital Common
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.
Resumo:
The initial phase in a content distribution (file sharing) scenario is a delicate phase due to the lack of global knowledge and the dynamics of the overlay. An unwise distribution of the pieces in this phase can cause delays in reaching steady state, thus increasing file download times. We devise a scheduling algorithm at the seed (source peer with full content), based on a proportional fair approach, and we implement it on a real file sharing client [1]. In dynamic overlays, our solution improves up to 25% the average downloading time of a standard protocol ala BitTorrent.