3 resultados para Apparent needs
em Boston University Digital Common
Resumo:
Objectives: “Tooth Smart Healthy Start” is a randomized clinical trial which aims to reduce the incidence of early childhood caries (ECC) in Boston public housing residents as part of the NIH funded Northeast Center for Research to Evaluate and Eliminate Dental Disparities. The purpose of this project was to assess public housing stakeholders' perception of the oral health needs of public housing residents and their interest in replicating “Tooth Smart Healthy Start” in other public housing sites across the nation. Methods: The target population was the 180 attendees of the 2010 meeting of the Health Care for Residents of Public Housing National Conference. A ten question survey which assessed conference attendees' beliefs about oral health and its importance to public housing residents was distributed. Data was analyzed using SAS 9.1. Descriptive statistics were calculated for each variable and results were stratified by participants' roles. Results: Thirty percent of conference attendees completed the survey. The participants consisted of residents, agency representatives, and housing authority personnel. When asked to rank health issues facing public housing residents, oral health was rated as most important (42%) or top three (16%) by residents. The agency representatives and housing authority personnel rated oral health among the top three (33% and 58% respectively) and top five (36% and 25% respectively). When participants ranked the three greatest resident health needs out of eight choices, oral health was the most common response. Majority of the participants expressed interest in replicating the “Tooth Smart Healthy Start” program at their sites. Conclusion: All stakeholder groups identified oral health as one of the greatest health needs of residents in public housing. Furthermore, if shown to reduce ECC, there is significant interest in implementing the program amongst key public housing stakeholders across the nation.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams Vl --> V2, Vl --> MT, and Vl --> V2 --> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-ofcontrast and insensitive to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to directionof-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion; split motion; gamma motion and reverse-contrast gamma motion; delta motion; visual inertia; the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's Laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.