2 resultados para Andrewes, Lancelot, 1555-1626.
em Boston University Digital Common
Resumo:
Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.
Resumo:
Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic they carry (mice), while a small fraction of the connections are carrying a large portion of the traffic (elephants). A careful study of the TCP protocol shows that without help from an Active Queue Management (AQM) policy, short connections tend to lose to long connections in their competition for bandwidth. This is because short connections do not gain detailed knowledge of the network state, and therefore they are doomed to be less competitive due to the conservative nature of the TCP congestion control algorithm. Inspired by the Differentiated Services (Diffserv) architecture, we propose to give preferential treatment to short connections inside the bottleneck queue, so that short connections experience less packet drop rate than long connections. This is done by employing the RIO (RED with In and Out) queue management policy which uses different drop functions for different classes of traffic. Our simulation results show that: (1) in a highly loaded network, preferential treatment is necessary to provide short TCP connections with better response time and fairness without hurting the performance of long TCP connections; (2) the proposed scheme still delivers packets in FIFO manner at each link, thus it maintains statistical multiplexing gain and does not misorder packets; (3) choosing a smaller default initial timeout value for TCP can help enhance the performance of short TCP flows, however not as effectively as our scheme and at the risk of congestion collapse; (4) in the worst case, our proposal works as well as a regular RED scheme, in terms of response time and goodput.