4 resultados para Alexandra palm

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PDF file

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Handshape is a key articulatory parameter in sign language, and thus handshape recognition from signing video is essential for sign recognition and retrieval. Handshape transitions within monomorphemic lexical signs (the largest class of signs in signed languages) are governed by phonological rules. For example, such transitions normally involve either closing or opening of the hand (i.e., to exclusively use either folding or unfolding of the palm and one or more fingers). Furthermore, akin to allophonic variations in spoken languages, both inter- and intra- signer variations in the production of specific handshapes are observed. We propose a Bayesian network formulation to exploit handshape co-occurrence constraints, also utilizing information about allophonic variations to aid in handshape recognition. We propose a fast non-rigid image alignment method to gain improved robustness to handshape appearance variations during computation of observation likelihoods in the Bayesian network. We evaluate our handshape recognition approach on a large dataset of monomorphemic lexical signs. We demonstrate that leveraging linguistic constraints on handshapes results in improved handshape recognition accuracy. As part of the overall project, we are collecting and preparing for dissemination a large corpus (three thousand signs from three native signers) of American Sign Language (ASL) video. The video have been annotated using SignStream® [Neidle et al.] with labels for linguistic information such as glosses, morphological properties and variations, and start/end handshapes associated with each ASL sign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many real world image analysis problems, such as face recognition and hand pose estimation, involve recognizing a large number of classes of objects or shapes. Large margin methods, such as AdaBoost and Support Vector Machines (SVMs), often provide competitive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus making it difficult to apply such methods when thousands or millions of classes need to be recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small number of candidate classes can be identified efficiently at the filter step, and computationally expensive large margin classifiers are used to evaluate these candidates at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS (One-vs.-All classification using Vector Search). ClassMap is an embedding-based method, works for both boosted classifiers and SVMs, and tends to map the patterns and their associated classes close to each other in a vector space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-responding OVA classifier becomes a classical vector search problem, where well-known methods can be used to gain efficiency. In our experiments, the proposed methods achieve significant speed-ups, in some cases up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers. This was achieved in hand pose recognition and face recognition systems where the number of classes ranges from 535 to 48,600.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A system for recovering 3D hand pose from monocular color sequences is proposed. The system employs a non-linear supervised learning framework, the specialized mappings architecture (SMA), to map image features to likely 3D hand poses. The SMA's fundamental components are a set of specialized forward mapping functions, and a single feedback matching function. The forward functions are estimated directly from training data, which in our case are examples of hand joint configurations and their corresponding visual features. The joint angle data in the training set is obtained via a CyberGlove, a glove with 22 sensors that monitor the angular motions of the palm and fingers. In training, the visual features are generated using a computer graphics module that renders the hand from arbitrary viewpoints given the 22 joint angles. We test our system both on synthetic sequences and on sequences taken with a color camera. The system automatically detects and tracks both hands of the user, calculates the appropriate features, and estimates the 3D hand joint angles from those features. Results are encouraging given the complexity of the task.