2 resultados para Additional somatosensory information
em Boston University Digital Common
Resumo:
An increasing number of applications, such as distributed interactive simulation, live auctions, distributed games and collaborative systems, require the network to provide a reliable multicast service. This service enables one sender to reliably transmit data to multiple receivers. Reliability is traditionally achieved by having receivers send negative acknowledgments (NACKs) to request from the sender the retransmission of lost (or missing) data packets. However, this Automatic Repeat reQuest (ARQ) approach results in the well-known NACK implosion problem at the sender. Many reliable multicast protocols have been recently proposed to reduce NACK implosion. But, the message overhead due to NACK requests remains significant. Another approach, based on Forward Error Correction (FEC), requires the sender to encode additional redundant information so that a receiver can independently recover from losses. However, due to the lack of feedback from receivers, it is impossible for the sender to determine how much redundancy is needed. In this paper, we propose a new reliable multicast protocol, called ARM for Adaptive Reliable Multicast. Our protocol integrates ARQ and FEC techniques. The objectives of ARM are (1) reduce the message overhead due to NACK requests, (2) reduce the amount of data transmission, and (3) reduce the time it takes for all receivers to receive the data intact (without loss). During data transmission, the sender periodically informs the receivers of the number of packets that are yet to be transmitted. Based on this information, each receiver predicts whether this amount is enough to recover its losses. Only if it is not enough, that the receiver requests the sender to encode additional redundant packets. Using ns simulations, we show the superiority of our hybrid ARQ-FEC protocol over the well-known Scalable Reliable Multicast (SRM) protocol.
Resumo:
BACKGROUND:In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions.RESULTS:We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.CONCLUSION:A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor) and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased positive predictive value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on a collection of new annotations recently added to GO confirms the advantages suggested by the cross-validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein function prediction, that exploits the ontological structure of protein annotation databases in a principled manner, can offer substantial advantages over the successive application of 'flat' network-based methods.