1 resultado para Actors.
em Boston University Digital Common
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Research Repository at Institute of Developing Economies (3)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (11)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (18)
- Aston University Research Archive (10)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca Digital da Câmara dos Deputados (15)
- Biblioteca Digital de la Universidad Católica Argentina (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (164)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (14)
- Center for Jewish History Digital Collections (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (13)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (7)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (125)
- Indian Institute of Science - Bangalore - Índia (6)
- Instituto Politécnico de Leiria (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (123)
- Queensland University of Technology - ePrints Archive (242)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (30)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidade de Lisboa - Repositório Aberto (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (33)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (5)
Resumo:
Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.