3 resultados para Active Power Losses

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We postulate that exogenous losses-which are typically regarded as introducing undesirable "noise" that needs to be filtered out or hidden from end points-can be surprisingly beneficial. In this paper we evaluate the effects of exogenous losses on transmission control loops, focusing primarily on efficiency and convergence to fairness properties. By analytically capturing the effects of exogenous losses, we are able to characterize the transient behavior of TCP. Our numerical results suggest that "noise" resulting from exogenous losses should not be filtered out blindly, and that a careful examination of the parameter space leads to better strategies regarding the treatment of exogenous losses inside the network. Specifically, we show that while low levels of exogenous losses do help connections converge to their fair share, higher levels of losses lead to inefficient network utilization. We draw the line between these two cases by determining whether or not it is advantageous to hide, or more interestingly introduce, exogenous losses. Our proposed approach is based on classifying the effects of exogenous losses into long-term and short-term effects. Such classification informs the extent to which we control exogenous losses, so as to operate in an efficient and fair region. We validate our results through simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing interest in inference and prediction of network characteristics is justified by its importance for a variety of network-aware applications. One widely adopted strategy to characterize network conditions relies on active, end-to-end probing of the network. Active end-to-end probing techniques differ in (1) the structural composition of the probes they use (e.g., number and size of packets, the destination of various packets, the protocols used, etc.), (2) the entity making the measurements (e.g. sender vs. receiver), and (3) the techniques used to combine measurements in order to infer specific metrics of interest. In this paper, we present Periscope: a Linux API that enables the definition of new probing structures and inference techniques from user space through a flexible interface. PeriScope requires no support from clients beyond the ability to respond to ICMP ECHO REQUESTs and is designed to minimize user/kernel crossings and to ensure various constraints (e.g., back-to-back packet transmissions, fine-grained timing measurements) We show how to use Periscope for two different probing purposes, namely the measurement of shared packet losses between pairs of endpoints and for the measurement of subpath bandwidth. Results from Internet experiments for both of these goals are also presented.