2 resultados para ASS
em Boston University Digital Common
Resumo:
Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.
Resumo:
Interdomain routing on the Internet is performed using route preference policies specified independently, and arbitrarily by each Autonomous System in the network. These policies are used in the border gateway protocol (BGP) by each AS when selecting next-hop choices for routes to each destination. Conflicts between policies used by different ASs can lead to routing instabilities that, potentially, cannot be resolved no matter how long BGP is run. The Stable Paths Problem (SPP) is an abstract graph theoretic model of the problem of selecting nexthop routes for a destination. A stable solution to the problem is a set of next-hop choices, one for each AS, that is compatible with the policies of each AS. In a stable solution each AS has selected its best next-hop given that the next-hop choices of all neighbors are fixed. BGP can be viewed as a distributed algorithm for solving SPP. In this report we consider the stable paths problem, as well as a family of restricted variants of the stable paths problem, which we call F stable paths problems. We show that two very simple variants of the stable paths problem are also NP-complete. In addition we show that for networks with a DAG topology, there is an efficient centralized algorithm to solve the stable paths problem, and that BGP always efficiently converges to a stable solution on such networks.