2 resultados para 321-U1337B
em Boston University Digital Common
Resumo:
BACKGROUND: In response to concerns expressed by workers at a public meeting, we analyzed the mortality experience of workers who were employed at the IBM plant in Endicott, New York and died between 1969-2001. An epidemiologic feasibility assessment indicated potential worker exposure to several known and suspected carcinogens at this plant. METHODS: We used the mortality and work history files produced under a court order and used in a previous mortality analysis. Using publicly available data for the state of New York as a standard of comparison, we conducted proportional cancer mortality (PCMR) analysis. RESULTS: The results showed significantly increased mortality due to melanoma (PCMR = 367; 95% CI: 119, 856) and lymphoma (PCMR = 220; 95% CI: 101, 419) in males and modestly increased mortality due to kidney cancer (PCMR = 165; 95% CI: 45, 421) and brain cancer (PCMR = 190; 95% CI: 52, 485) in males and breast cancer (PCMR = 126; 95% CI: 34, 321) in females. CONCLUSION: These results are similar to results from a previous IBM mortality study and support the need for a full cohort mortality analysis such as the one being planned by the National Institute for Occupational Safety and Health.
Resumo:
This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.