3 resultados para 2008-2011 food price spikes
em Boston University Digital Common
Resumo:
Supported housing for individuals with severe mental illness strives to provide the services necessary to place and keep individuals in independent housing that is integrated into the community and in which the consumer has choice and control over his or her services and supports. Supported housing can be contrasted to an earlier model called the “linear residential approach” in which individuals are moved from the most restrictive settings (e.g., inpatient settings) through a series of more independent settings (e.g., group homes, supervised apartments) and then finally to independent housing. This approach has been criticized as punishing the client due to frequent moves, and as being less likely to result in independent housing. In the supported housing model (Anthony & Blanch, 1988) consumers have choice and control over their living environment, their treatment, and supports (e.g., case management, mental health and substance abuse services). Supports are flexible and faded in and out depending on needs. Results of this systematic review of supported housing suggest that there are several well-controlled studies of supported housing and several studies conducted with less rigorous designs. Overall, our synthesis suggests that supported housing can improve the living situation of individuals who are psychiatrically disabled, homeless and with substance abuse problems. Results show that supported housing can help people stay in apartments or homes up to about 80% of the time over an extended period. These results are contrary to concerns expressed by proponents of the linear residential model and housing models that espoused more restrictive environments. Results also show that housing subsidies or vouchers are helpful in getting and keeping individuals housed. Housing services appear to be cost effective and to reduce the costs of other social and clinical services. In order to be most effective, intensive case management services (rather than traditional case management) are needed and will generally lead to better housing outcomes. Having access to affordable housing and having a service system that is well-integrated is also important. Providing a person with supported housing reduces the likelihood that they will be re-hospitalized, although supported housing does not always lead to reduced psychiatric symptoms. Supported housing can improve clients’ quality of life and satisfaction with their living situation. Providing supported housing options that are of decent quality is important in order to keep people housed and satisfied with their housing. In addition, rapid entry into housing, with the provision of choices is critical. Program and clinical supports may be able to mitigate the social isolation that has sometimes been associated with supported housing.
Resumo:
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Resumo:
How do our brains transform the "blooming buzzing confusion" of daily experience into a coherent sense of self that can learn and selectively attend to important information? How do local signals at multiple processing stages, none of which has a global view of brain dynamics or behavioral outcomes, trigger learning at multiple synaptic sites when appropriate, and prevent learning when inappropriate, to achieve useful behavioral goals in a continually changing world? How does the brain allow synaptic plasticity at a remarkably rapid rate, as anyone who has gone to an exciting movie is readily aware, yet also protect useful memories from catastrophic forgetting? A neural model provides a unified answer by explaining and quantitatively simulating data about single cell biophysics and neurophysiology, laminar neuroanatomy, aggregate cell recordings (current-source densities, local field potentials), large-scale oscillations (beta, gamma), and spike-timing dependent plasticity, and functionally linking them all to cognitive information processing requirements.