25 resultados para 13627-010
em Boston University Digital Common
Resumo:
We investigate the efficient learnability of unions of k rectangles in the discrete plane (1,...,n)[2] with equivalence and membership queries. We exhibit a learning algorithm that learns any union of k rectangles with O(k^3log n) queries, while the time complexity of this algorithm is bounded by O(k^5log n). We design our learning algorithm by finding "corners" and "edges" for rectangles contained in the target concept and then constructing the target concept from those "corners" and "edges". Our result provides a first approach to on-line learning of nontrivial subclasses of unions of intersections of halfspaces with equivalence and membership queries.
Resumo:
In this paper, we study the efficacy of genetic algorithms in the context of combinatorial optimization. In particular, we isolate the effects of cross-over, treated as the central component of genetic search. We show that for problems of nontrivial size and difficulty, the contribution of cross-over search is marginal, both synergistically when run in conjunction with mutation and selection, or when run with selection alone, the reference point being the search procedure consisting of just mutation and selection. The latter can be viewed as another manifestation of the Metropolis process. Considering the high computational cost of maintaining a population to facilitate cross-over search, its marginal benefit renders genetic search inferior to its singleton-population counterpart, the Metropolis process, and by extension, simulated annealing. This is further compounded by the fact that many problems arising in practice may inherently require a large number of state transitions for a near-optimal solution to be found, making genetic search infeasible given the high cost of computing a single iteration in the enlarged state-space.
Resumo:
Estimation of 3D hand pose is useful in many gesture recognition applications, ranging from human-computer interaction to automated recognition of sign languages. In this paper, 3D hand pose estimation is treated as a database indexing problem. Given an input image of a hand, the most similar images in a large database of hand images are retrieved. The hand pose parameters of the retrieved images are used as estimates for the hand pose in the input image. Lipschitz embeddings of edge images into a Euclidean space are used to improve the efficiency of database retrieval. In order to achieve interactive retrieval times, similarity queries are initially performed in this Euclidean space. The paper describes ongoing work that focuses on how to best choose reference images, in order to improve retrieval accuracy.
Resumo:
The Border Gateway Protocol (BGP) is an interdomain routing protocol that allows each Autonomous System (AS) to define its own routing policies independently and use them to select the best routes. By means of policies, ASes are able to prevent some traffic from accessing their resources, or direct their traffic to a preferred route. However, this flexibility comes at the expense of a possibility of divergence behavior because of mutually conflicting policies. Since BGP is not guaranteed to converge even in the absence of network topology changes, it is not safe. In this paper, we propose a randomized approach to providing safety in BGP. The proposed algorithm dynamically detects policy conflicts, and tries to eliminate the conflict by changing the local preference of the paths involved. Both the detection and elimination of policy conflicts are performed locally, i.e. by using only local information. Randomization is introduced to prevent synchronous updates of the local preferences of the paths involved in the same conflict.
Resumo:
The explosion of WWW traffic necessitates an accurate picture of WWW use, and in particular requires a good understanding of client requests for WWW documents. To address this need, we have collected traces of actual executions of NCSA Mosaic, reflecting over half a million user requests for WWW documents. In this paper we describe the methods we used to collect our traces, and the formats of the collected data. Next, we present a descriptive statistical summary of the traces we collected, which identifies a number of trends and reference patterns in WWW use. In particular, we show that many characteristics of WWW use can be modelled using power-law distributions, including the distribution of document sizes, the popularity of documents as a function of size, the distribution of user requests for documents, and the number of references to documents as a function of their overall rank in popularity (Zipf's law). Finally, we show how the power-law distributions derived from our traces can be used to guide system designers interested in caching WWW documents.
Resumo:
The proliferation of inexpensive workstations and networks has created a new era in distributed computing. At the same time, non-traditional applications such as computer-aided design (CAD), computer-aided software engineering (CASE), geographic-information systems (GIS), and office-information systems (OIS) have placed increased demands for high-performance transaction processing on database systems. The combination of these factors gives rise to significant challenges in the design of modern database systems. In this thesis, we propose novel techniques whose aim is to improve the performance and scalability of these new database systems. These techniques exploit client resources through client-based transaction management. Client-based transaction management is realized by providing logging facilities locally even when data is shared in a global environment. This thesis presents several recovery algorithms which utilize client disks for storing recovery related information (i.e., log records). Our algorithms work with both coarse and fine-granularity locking and they do not require the merging of client logs at any time. Moreover, our algorithms support fine-granularity locking with multiple clients permitted to concurrently update different portions of the same database page. The database state is recovered correctly when there is a complex crash as well as when the updates performed by different clients on a page are not present on the disk version of the page, even though some of the updating transactions have committed. This thesis also presents the implementation of the proposed algorithms in a memory-mapped storage manager as well as a detailed performance study of these algorithms using the OO1 database benchmark. The performance results show that client-based logging is superior to traditional server-based logging. This is because client-based logging is an effective way to reduce dependencies on server CPU and disk resources and, thus, prevents the server from becoming a performance bottleneck as quickly when the number of clients accessing the database increases.
Resumo:
We propose and evaluate admission control mechanisms for ACCORD, an Admission Control and Capacity Overload management Real-time Database framework-an architecture and a transaction model-for hard deadline RTDB systems. The system architecture consists of admission control and scheduling components which provide early notification of failure to submitted transactions that are deemed not valuable or incapable of completing on time. In particular, our Concurrency Admission Control Manager (CACM) ensures that transactions which are admitted do not overburden the system by requiring a level of concurrency that is not sustainable. The transaction model consists of two components: a primary task and a compensating task. The execution requirements of the primary task are not known a priori, whereas those of the compensating task are known a priori. Upon the submission of a transaction, the Admission Control Mechanisms are employed to decide whether to admit or reject that transaction. Once admitted, a transaction is guaranteed to finish executing before its deadline. A transaction is considered to have finished executing if exactly one of two things occur: Either its primary task is completed (successful commitment), or its compensating task is completed (safe termination). Committed transactions bring a profit to the system, whereas a terminated transaction brings no profit. The goal of the admission control and scheduling protocols (e.g., concurrency control, I/O scheduling, memory management) employed in the system is to maximize system profit. In that respect, we describe a number of concurrency admission control strategies and contrast (through simulations) their relative performance.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
A method for reconstruction of 3D rational B-spline surfaces from multiple views is proposed. Given corresponding features in multiple views, though not necessarily visible in all views, the surface is reconstructed. First 2D B-spline patches are fitted to each view. The 3D B-splines and projection matricies can then be extracted from the 2D B-splines using factorization methods. The surface fit is then further refined via an iterative procedure. Finally, a hierarchal fitting scheme is proposed to allow modeling of complex surfaces by means of knot insertion. Experiments with real imagery demonstrate the efficacy of the approach.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
Camera Canvas is an image editing software package for users with severe disabilities that limit their mobility. It is specially designed for Camera Mouse, a camera-based mouse-substitute input system. Users can manipulate images through various head movements, tracked by Camera Mouse. The system is also fully usable with traditional mouse or touch-pad input. Designing the system, we studied the requirements and solutions for image editing and content creation using Camera Mouse. Experiments with 20 subjects, each testing Camera Canvas with Camera Mouse as the input mechanism, showed that users found the software easy to understand and operate. User feedback was taken into account to make the software more usable and the interface more intuitive. We suggest that the Camera Canvas software makes important progress in providing a new medium of utility and creativity in computing for users with severe disabilities.
Resumo:
Controlling the mobility pattern of mobile nodes (e.g., robots) to monitor a given field is a well-studied problem in sensor networks. In this setup, absolute control over the nodes’ mobility is assumed. Apart from the physical ones, no other constraints are imposed on planning mobility of these nodes. In this paper, we address a more general version of the problem. Specifically, we consider a setting in which mobility of each node is externally constrained by a schedule consisting of a list of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged to achieve a specific coverage distribution of a field. Such a distribution defines the relative importance of different field locations. We define the Constrained Mobility Coordination problem for Preferential Coverage (CMC-PC) as follows: given a field with a desired monitoring distribution, and a number of nodes n, each with its own schedule, we need to coordinate the mobility of the nodes in order to achieve the following two goals: 1) satisfy the schedules of all nodes, and 2) attain the required coverage of the given field. We show that the CMC-PC problem is NP-complete (by reduction to the Hamiltonian Cycle problem). Then we propose TFM, a distributed heuristic to achieve field coverage that is as close as possible to the required coverage distribution. We verify the premise of TFM using extensive simulations, as well as taxi logs from a major metropolitan area. We compare TFM to the random mobility strategy—the latter provides a lower bound on performance. Our results show that TFM is very successful in matching the required field coverage distribution, and that it provides, at least, two-fold query success ratio for queries that follow the target coverage distribution of the field.
Resumo:
In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
In [previous papers] we presented the design, specification and proof of correctness of a fully distributed location management scheme for PCS networks and argued that fully replicating location information is both appropriate and efficient for small PCS networks. In this paper, we analyze the performance of this scheme. Then, we extend the scheme in a hierarchical environment so as to scale to large PCS networks. Through extensive numerical results, we show the superiority of our scheme compared to the current IS-41 standard.
Resumo:
The isomorphisms holding in all models of the simply typed lambda calculus with surjective and terminal objects are well studied - these models are exactly the Cartesian closed categories. Isomorphism of two simple types in such a model is decidable by reduction to a normal form and comparison under a finite number of permutations (Bruce, Di Cosmo, and Longo 1992). Unfortunately, these normal forms may be exponentially larger than the original types so this construction decides isomorphism in exponential time. We show how using space-sharing/hash-consing techniques and memoization can be used to decide isomorphism in practical polynomial time (low degree, small hidden constant). Other researchers have investigated simple type isomorphism in relation to, among other potential applications, type-based retrieval of software modules from libraries and automatic generation of bridge code for multi-language systems. Our result makes such potential applications practically feasible.