26 resultados para 013
em Boston University Digital Common
Resumo:
We describe a GB parser implemented along the lines of those written by Fong [4] and Dorr [2]. The phrase structure recovery component is an implementation of Tomita's generalized LR parsing algorithm (described in [10]), with recursive control flow (similar to Fong's implementation). The major principles implemented are government, binding, bounding, trace theory, case theory, θ-theory, and barriers. The particular version of GB theory we use is that described by Haegeman [5]. The parser is minimal in the sense that it implements the major principles needed in a GB parser, and has fairly good coverage of linguistically interesting portions of the English language.
Resumo:
This report presents an algorithm, and its implementation, for doing type inference in the context of Quasi-Static Typing (QST) ["Quasy-static Typing." Satish Thatte Proc. ACM Symp. on Principles of Programming Languages, 1988]. The package infers types a la "QST" for the simply typed λ-calculus.
Resumo:
We postulate that exogenous losses-which are typically regarded as introducing undesirable "noise" that needs to be filtered out or hidden from end points-can be surprisingly beneficial. In this paper we evaluate the effects of exogenous losses on transmission control loops, focusing primarily on efficiency and convergence to fairness properties. By analytically capturing the effects of exogenous losses, we are able to characterize the transient behavior of TCP. Our numerical results suggest that "noise" resulting from exogenous losses should not be filtered out blindly, and that a careful examination of the parameter space leads to better strategies regarding the treatment of exogenous losses inside the network. Specifically, we show that while low levels of exogenous losses do help connections converge to their fair share, higher levels of losses lead to inefficient network utilization. We draw the line between these two cases by determining whether or not it is advantageous to hide, or more interestingly introduce, exogenous losses. Our proposed approach is based on classifying the effects of exogenous losses into long-term and short-term effects. Such classification informs the extent to which we control exogenous losses, so as to operate in an efficient and fair region. We validate our results through simulations.
Resumo:
This paper presents a new approach to window-constrained scheduling, suitable for multimedia and weakly-hard real-time systems. We originally developed an algorithm, called Dynamic Window-Constrained Scheduling (DWCS), that attempts to guarantee no more than x out of y deadlines are missed for real-time jobs such as periodic CPU tasks, or delay-constrained packet streams. While DWCS is capable of generating a feasible window-constrained schedule that utilizes 100% of resources, it requires all jobs to have the same request periods (or intervals between successive service requests). We describe a new algorithm called Virtual Deadline Scheduling (VDS), that provides window-constrained service guarantees to jobs with potentially different request periods, while still maximizing resource utilization. VDS attempts to service m out of k job instances by their virtual deadlines, that may be some finite time after the corresponding real-time deadlines. Notwithstanding, VDS is capable of outperforming DWCS and similar algorithms, when servicing jobs with potentially different request periods. Additionally, VDS is able to limit the extent to which a fraction of all job instances are serviced late. Results from simulations show that VDS can provide better window-constrained service guarantees than other related algorithms, while still having as good or better delay bounds for all scheduled jobs. Finally, an implementation of VDS in the Linux kernel compares favorably against DWCS for a range of scheduling loads.
Resumo:
This report summarizes the technical presentations and discussions that took place during RTDB'96: the First International Workshop on Real-Time Databases, which was held on March 7 and 8, 1996 in Newport Beach, California. The main goals of this project were to (1) review recent advances in real-time database systems research, (2) to promote interaction among real-time database researchers and practitioners, and (3) to evaluate the maturity and directions of real-time database technology.
Resumo:
To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.
Resumo:
ERRATA: We present corrections to Fact 3 and (as a consequence) to Lemma 1 of BUCS Technical Report BUCS-TR-2000-013 (also published in IEEE INCP'2000)[1]. These corrections result in slight changes to the formulae used for the identifications of shared losses, which we quantify.
Resumo:
We discuss the design principles of TCP within the context of heterogeneous wired/wireless networks and mobile networking. We identify three shortcomings in TCP's behavior: (i) the protocol's error detection mechanism, which does not distinguish different types of errors and thus does not suffice for heterogeneous wired/wireless environments, (ii) the error recovery, which is not responsive to the distinctive characteristics of wireless networks such as transient or burst errors due to handoffs and fading channels, and (iii) the protocol strategy, which does not control the tradeoff between performance measures such as goodput and energy consumption, and often entails a wasteful effort of retransmission and energy expenditure. We discuss a solution-framework based on selected research proposals and the associated evaluation criteria for the suggested modifications. We highlight an important angle that did not attract the required attention so far: the need for new performance metrics, appropriate for evaluating the impact of protocol strategies on battery-powered devices.
Resumo:
MPLS (Multi-Protocol Label Switching) has recently emerged to facilitate the engineering of network traffic. This can be achieved by directing packet flows over paths that satisfy multiple requirements. MPLS has been regarded as an enhancement to traditional IP routing, which has the following problems: (1) all packets with the same IP destination address have to follow the same path through the network; and (2) paths have often been computed based on static and single link metrics. These problems may cause traffic concentration, and thus degradation in quality of service. In this paper, we investigate by simulations a range of routing solutions and examine the tradeoff between scalability and performance. At one extreme, IP packet routing using dynamic link metrics provides a stateless solution but may lead to routing oscillations. At the other extreme, we consider a recently proposed Profile-based Routing (PBR), which uses knowledge of potential ingress-egress pairs as well as the traffic profile among them. Minimum Interference Routing (MIRA) is another recently proposed MPLS-based scheme, which only exploits knowledge of potential ingress-egress pairs but not their traffic profile. MIRA and the more conventional widest-shortest path (WSP) routing represent alternative MPLS-based approaches on the spectrum of routing solutions. We compare these solutions in terms of utility, bandwidth acceptance ratio as well as their scalability (routing state and computational overhead) and load balancing capability. While the simplest of the per-flow algorithms we consider, the performance of WSP is close to dynamic per-packet routing, without the potential instabilities of dynamic routing.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.
Resumo:
We present an online distributed algorithm, the Causation Logging Algorithm (CLA), in which Autonomous Systems (ASes) in the Internet individually report route oscillations/flaps they experience to a central Internet Routing Registry (IRR). The IRR aggregates these reports and may observe what we call causation chains where each node on the chain caused a route flap at the next node along the chain. A chain may also have a causation cycle. The type of an observed causation chain/cycle allows the IRR to infer the underlying policy routing configuration (i.e., the system of economic relationships and constraints on route/path preferences). Our algorithm is based on a formal policy routing model that captures the propagation dynamics of route flaps under arbitrary changes in topology or path preferences. We derive invariant properties of causation chains/cycles for ASes which conform to economic relationships based on the popular Gao-Rexford model. The Gao-Rexford model is known to be safe in the sense that the system always converges to a stable set of paths under static conditions. Our CLA algorithm recovers the type/property of an observed causation chain of an underlying system and determines whether it conforms to the safe economic Gao-Rexford model. Causes for nonconformity can be diagnosed by comparing the properties of the causation chains with those predicted from different variants of the Gao-Rexford model.
Resumo:
We introduce the Dynamic Policy Routing (DPR) model that captures the propagation of route updates under arbitrary changes in topology or path preferences. DPR introduces the notion of causation chains where the route flap at one node causes a flap at the next node along the chain. Using DPR, we model the Gao-Rexford (economic) guidelines that guarantee the safety (i.e., convergence) of policy routing. We establish three principles of safe policy routing dynamics. The non-interference principle provides insight into which ASes can directly induce route changes in one another. The single cycle principle and the multi-tiered cycle principle provide insight into how cycles of routing updates can manifest in any network. We develop INTERFERENCEBEAT, a distributed algorithm that propagates a small token along causation chains to check adherence to these principles. To enhance the diagnosis power of INTERFERENCEBEAT, we model four violations of the Gao-Rexford guidelines (e.g., transiting between peers) and characterize the resulting dynamics.
Resumo:
Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.