677 resultados para Boston University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two algorithms for computing distances along a non-convex polyhedral surface. The first algorithm computes exact minimal-geodesic distances and the second algorithm combines these distances to compute exact shortest-path distances along the surface. Both algorithms have been extended to compute the exact minimalgeodesic paths and shortest paths. These algorithms have been implemented and validated on surfaces for which the correct solutions are known, in order to verify the accuracy and to measure the run-time performance, which is cubic or less for each algorithm. The exact-distance computations carried out by these algorithms are feasible for large-scale surfaces containing tens of thousands of vertices, and are a necessary component of near-isometric surface flattening methods that accurately transform curved manifolds into flat representations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

— Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semisupervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative lowdimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.bu.edu/SSART/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are of great controversy, largely because such learning can often be attributed to plasticity in later stages of sensory processing or in the decision processes. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity, by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in conjunction with the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show learning for the exposed contrast polarity and that this learning does not transfer to the unexposed contrast polarity. These results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378)