34 resultados para wireless TCP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider challenges associated with application domains in which a large number of distributed, networked sensors must perform a sensing task repeatedly over time. For the tasks we consider, there are three significant challenges to address. First, nodes have resource constraints imposed by their finite power supply, which motivates computations that are energy-conserving. Second, for the applications we describe, the utility derived from a sensing task may vary depending on the placement and size of the set of nodes who participate, which often involves complex objective functions for nodes to target. Finally, nodes must attempt to realize these global objectives with only local information. We present a model for such applications, in which we define appropriate global objectives based on utility functions and specify a cost model for energy consumption. Then, for an important class of utility functions, we present distributed algorithms which attempt to maximize the utility derived from the sensor network over its lifetime. The algorithms and experimental results we present enable nodes to adaptively change their roles over time and use dynamic reconfiguration of routes to load balance energy consumption in the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a framework for aggregated congestion management for TCP flows and shows how to integrate such an approach in an existing TCP protocol stack. The thesis presents an initial implementation of this congestion management scheme in Linux, with performance evaluation in ns as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.