431 resultados para Technical Report, Computer Science
Resumo:
A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
Resumo:
The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.
Resumo:
Understanding the nature of the workloads and system demands created by users of the World Wide Web is crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads have been shown to exhibit a number of characteristic features; however, it is not clear how those features may be changing with time. In this study we compare two measurements of Web client workloads separated in time by three years, both captured from the same computing facility at Boston University. The older dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new dataset has the drawback that the collection of users measured may no longer be representative of general Web users; however using it has the advantage that many comparisons can be drawn more clearly than would be possible using a new, different source of measurement. Our results fall into two categories. First we compare the statistical and distributional properties of Web requests across the two datasets. This serves to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests. We find that the kinds of distributions that best describe document sizes have not changed between 1995 and 1998, although specific values of the distributional parameters are different. Second, we explore the question of how the observed differences in the properties of Web client requests, particularly the popularity and temporal locality properties, affect the potential for Web file caching in the network. We find that for the computing facility represented by our traces between 1995 and 1998, (1) the benefits of using size-based caching policies have diminished; and (2) the potential for caching requested files in the network has declined.
Resumo:
In this paper, we propose and evaluate an implementation of a prototype scalable web server. The prototype consists of a load-balanced cluster of hosts that collectively accept and service TCP connections. The host IP addresses are advertised using the Round Robin DNS technique, allowing any host to receive requests from any client. Once a client attempts to establish a TCP connection with one of the hosts, a decision is made as to whether or not the connection should be redirected to a different host---namely, the host with the lowest number of established connections. We use the low-overhead Distributed Packet Rewriting (DPR) technique to redirect TCP connections. In our prototype, each host keeps information about connections in hash tables and linked lists. Every time a packet arrives, it is examined to see if it has to be redirected or not. Load information is maintained using periodic broadcasts amongst the cluster hosts.
Resumo:
A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
Resumo:
Under high loads, a Web server may be servicing many hundreds of connections concurrently. In traditional Web servers, the question of the order in which concurrent connections are serviced has been left to the operating system. In this paper we ask whether servers might provide better service by using non-traditional service ordering. In particular, for the case when a Web server is serving static files, we examine the costs and benefits of a policy that gives preferential service to short connections. We start by assessing the scheduling behavior of a commonly used server (Apache running on Linux) with respect to connection size and show that it does not appear to provide preferential service to short connections. We then examine the potential performance improvements of a policy that does favor short connections (shortest-connection-first). We show that mean response time can be improved by factors of four or five under shortest-connection-first, as compared to an (Apache-like) size-independent policy. Finally we assess the costs of shortest-connection-first scheduling in terms of unfairness (i.e., the degree to which long connections suffer). We show that under shortest-connection-first scheduling, long connections pay very little penalty. This surprising result can be understood as a consequence of heavy-tailed Web server workloads, in which most connections are small, but most server load is due to the few large connections. We support this explanation using analysis.
Resumo:
One of the most vexing questions facing researchers interested in the World Wide Web is why users often experience long delays in document retrieval. The Internet's size, complexity, and continued growth make this a difficult question to answer. We describe the Wide Area Web Measurement project (WAWM) which uses an infrastructure distributed across the Internet to study Web performance. The infrastructure enables simultaneous measurements of Web client performance, network performance and Web server performance. The infrastructure uses a Web traffic generator to create representative workloads on servers, and both active and passive tools to measure performance characteristics. Initial results based on a prototype installation of the infrastructure are presented in this paper.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.
Resumo:
We present a framework for estimating 3D relative structure (shape) and motion given objects undergoing nonrigid deformation as observed from a fixed camera, under perspective projection. Deforming surfaces are approximated as piece-wise planar, and piece-wise rigid. Robust registration methods allow tracking of corresponding image patches from view to view and recovery of 3D shape despite occlusions, discontinuities, and varying illumination conditions. Many relatively small planar/rigid image patch trackers are scattered throughout the image; resulting estimates of structure and motion at each patch are combined over local neighborhoods via an oriented particle systems formulation. Preliminary experiments have been conducted on real image sequences of deforming objects and on synthetic sequences where ground truth is known.
Resumo:
We propose to investigate a model-based technique for encoding non-rigid object classes in terms of object prototypes. Objects from the same class can be parameterized by identifying shape and appearance invariants of the class to devise low-level representations. The approach presented here creates a flexible model for an object class from a set of prototypes. This model is then used to estimate the parameters of low-level representation of novel objects as combinations of the prototype parameters. Variations in the object shape are modeled as non-rigid deformations. Appearance variations are modeled as intensity variations. In the training phase, the system is presented with several example prototype images. These prototype images are registered to a reference image by a finite element-based technique called Active Blobs. The deformations of the finite element model to register a prototype image with the reference image provide the shape description or shape vector for the prototype. The shape vector for each prototype, is then used to warp the prototype image onto the reference image and obtain the corresponding texture vector. The prototype texture vectors, being warped onto the same reference image have a pixel by pixel correspondence with each other and hence are "shape normalized". Given sufficient number of prototypes that exhibit appropriate in-class variations, the shape and the texture vectors define a linear prototype subspace that spans the object class. Each prototype is a vector in this subspace. The matching phase involves the estimation of a set of combination parameters for synthesis of the novel object by combining the prototype shape and texture vectors. The strengths of this technique lie in the combined estimation of both shape and appearance parameters. This is in contrast with the previous approaches where shape and appearance parameters were estimated separately.
Resumo:
Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.
Resumo:
Web caching aims to reduce network traffic, server load, and user-perceived retrieval delays by replicating "popular" content on proxy caches that are strategically placed within the network. While key to effective cache utilization, popularity information (e.g. relative access frequencies of objects requested through a proxy) is seldom incorporated directly in cache replacement algorithms. Rather, other properties of the request stream (e.g. temporal locality and content size), which are easier to capture in an on-line fashion, are used to indirectly infer popularity information, and hence drive cache replacement policies. Recent studies suggest that the correlation between these secondary properties and popularity is weakening due in part to the prevalence of efficient client and proxy caches (which tend to mask these correlations). This trend points to the need for proxy cache replacement algorithms that directly capture and use popularity information. In this paper, we (1) present an on-line algorithm that effectively captures and maintains an accurate popularity profile of Web objects requested through a caching proxy, (2) propose a novel cache replacement policy that uses such information to generalize the well-known GreedyDual-Size algorithm, and (3) show the superiority of our proposed algorithm by comparing it to a host of recently-proposed and widely-used algorithms using extensive trace-driven simulations and a variety of performance metrics.
Resumo:
In [previous papers] we presented the design, specification and proof of correctness of a fully distributed location management scheme for PCS networks and argued that fully replicating location information is both appropriate and efficient for small PCS networks. In this paper, we analyze the performance of this scheme. Then, we extend the scheme in a hierarchical environment so as to scale to large PCS networks. Through extensive numerical results, we show the superiority of our scheme compared to the current IS-41 standard.
Resumo:
An increasing number of applications, such as distributed interactive simulation, live auctions, distributed games and collaborative systems, require the network to provide a reliable multicast service. This service enables one sender to reliably transmit data to multiple receivers. Reliability is traditionally achieved by having receivers send negative acknowledgments (NACKs) to request from the sender the retransmission of lost (or missing) data packets. However, this Automatic Repeat reQuest (ARQ) approach results in the well-known NACK implosion problem at the sender. Many reliable multicast protocols have been recently proposed to reduce NACK implosion. But, the message overhead due to NACK requests remains significant. Another approach, based on Forward Error Correction (FEC), requires the sender to encode additional redundant information so that a receiver can independently recover from losses. However, due to the lack of feedback from receivers, it is impossible for the sender to determine how much redundancy is needed. In this paper, we propose a new reliable multicast protocol, called ARM for Adaptive Reliable Multicast. Our protocol integrates ARQ and FEC techniques. The objectives of ARM are (1) reduce the message overhead due to NACK requests, (2) reduce the amount of data transmission, and (3) reduce the time it takes for all receivers to receive the data intact (without loss). During data transmission, the sender periodically informs the receivers of the number of packets that are yet to be transmitted. Based on this information, each receiver predicts whether this amount is enough to recover its losses. Only if it is not enough, that the receiver requests the sender to encode additional redundant packets. Using ns simulations, we show the superiority of our hybrid ARQ-FEC protocol over the well-known Scalable Reliable Multicast (SRM) protocol.
Resumo:
To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.