32 resultados para statistical reports
Resumo:
Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic they carry (mice), while a small fraction of the connections are carrying a large portion of the traffic (elephants). A careful study of the TCP protocol shows that without help from an Active Queue Management (AQM) policy, short connections tend to lose to long connections in their competition for bandwidth. This is because short connections do not gain detailed knowledge of the network state, and therefore they are doomed to be less competitive due to the conservative nature of the TCP congestion control algorithm. Inspired by the Differentiated Services (Diffserv) architecture, we propose to give preferential treatment to short connections inside the bottleneck queue, so that short connections experience less packet drop rate than long connections. This is done by employing the RIO (RED with In and Out) queue management policy which uses different drop functions for different classes of traffic. Our simulation results show that: (1) in a highly loaded network, preferential treatment is necessary to provide short TCP connections with better response time and fairness without hurting the performance of long TCP connections; (2) the proposed scheme still delivers packets in FIFO manner at each link, thus it maintains statistical multiplexing gain and does not misorder packets; (3) choosing a smaller default initial timeout value for TCP can help enhance the performance of short TCP flows, however not as effectively as our scheme and at the risk of congestion collapse; (4) in the worst case, our proposal works as well as a regular RED scheme, in terms of response time and goodput.
Resumo:
An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a "virtual camera" is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.
Resumo:
Traditionally, slotted communication protocols have employed guard times to delineate and align slots. These guard times may expand the slot duration significantly, especially when clocks are allowed to drift for longer time to reduce clock synchronization overhead. Recently, a new class of lightweight protocols for statistical estimation in wireless sensor networks have been proposed. This new class requires very short transmission durations (jam signals), thus the traditional approach of using guard times would impose significant overhead. We propose a new, more efficient algorithm to align slots. Based on geometrical properties of space, we prove that our approach bounds the slot duration by only a constant factor of what is needed. Furthermore, we show by simulation that this bound is loose and an even smaller slot duration is required, making our approach even more efficient.
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.
Resumo:
Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.
Resumo:
In this paper, we present Slack Stealing Job Admission Control (SSJAC)---a methodology for scheduling periodic firm-deadline tasks with variable resource requirements, subject to controllable Quality of Service (QoS) constraints. In a system that uses Rate Monotonic Scheduling, SSJAC augments the slack stealing algorithm of Thuel et al with an admission control policy to manage the variability in the resource requirements of the periodic tasks. This enables SSJAC to take advantage of the 31\% of utilization that RMS cannot use, as well as any utilization unclaimed by jobs that are not admitted into the system. Using SSJAC, each task in the system is assigned a resource utilization threshold that guarantees the minimal acceptable QoS for that task (expressed as an upper bound on the rate of missed deadlines). Job admission control is used to ensure that (1) only those jobs that will complete by their deadlines are admitted, and (2) tasks do not interfere with each other, thus a job can only monopolize the slack in the system, but not the time guaranteed to jobs of other tasks. We have evaluated SSJAC against RMS and Statistical RMS (SRMS). Ignoring overhead issues, SSJAC consistently provides better performance than RMS in overload, and, in certain conditions, better performance than SRMS. In addition, to evaluate optimality of SSJAC in an absolute sense, we have characterized the performance of SSJAC by comparing it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.
Resumo:
A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.
Resumo:
The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.
Resumo:
Understanding the nature of the workloads and system demands created by users of the World Wide Web is crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads have been shown to exhibit a number of characteristic features; however, it is not clear how those features may be changing with time. In this study we compare two measurements of Web client workloads separated in time by three years, both captured from the same computing facility at Boston University. The older dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new dataset has the drawback that the collection of users measured may no longer be representative of general Web users; however using it has the advantage that many comparisons can be drawn more clearly than would be possible using a new, different source of measurement. Our results fall into two categories. First we compare the statistical and distributional properties of Web requests across the two datasets. This serves to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests. We find that the kinds of distributions that best describe document sizes have not changed between 1995 and 1998, although specific values of the distributional parameters are different. Second, we explore the question of how the observed differences in the properties of Web client requests, particularly the popularity and temporal locality properties, affect the potential for Web file caching in the network. We find that for the computing facility represented by our traces between 1995 and 1998, (1) the benefits of using size-based caching policies have diminished; and (2) the potential for caching requested files in the network has declined.
Resumo:
A novel approach for estimating articulated body posture and motion from monocular video sequences is proposed. Human pose is defined as the instantaneous two dimensional configuration (i.e., the projection onto the image plane) of a single articulated body in terms of the position of a predetermined set of joints. First, statistical segmentation of the human bodies from the background is performed and low-level visual features are found given the segmented body shape. The goal is to be able to map these, generally low level, visual features to body configurations. The system estimates different mappings, each one with a specific cluster in the visual feature space. Given a set of body motion sequences for training, unsupervised clustering is obtained via the Expectation Maximation algorithm. Then, for each of the clusters, a function is estimated to build the mapping between low-level features to 3D pose. Currently this mapping is modeled by a neural network. Given new visual features, a mapping from each cluster is performed to yield a set of possible poses. From this set, the system selects the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input. Performance of the proposed approach is characterized using a new set of known body postures, showing promising results.
Resumo:
The cost and complexity of deploying measurement infrastructure in the Internet for the purpose of analyzing its structure and behavior is considerable. Basic questions about the utility of increasing the number of measurements and/or measurement sites have not yet been addressed which has lead to a "more is better" approach to wide-area measurements. In this paper, we quantify the marginal utility of performing wide-area measurements in the context of Internet topology discovery. We characterize topology in terms of nodes, links, node degree distribution, and end-to-end flows using statistical and information-theoretic techniques. We classify nodes discovered on the routes between a set of 8 sources and 1277 destinations to differentiate nodes which make up the so called "backbone" from those which border the backbone and those on links between the border nodes and destination nodes. This process includes reducing nodes that advertise multiple interfaces to single IP addresses. We show that the utility of adding sources goes down significantly after 2 from the perspective of interface, node, link and node degree discovery. We show that the utility of adding destinations is constant for interfaces, nodes, links and node degree indicating that it is more important to add destinations than sources. Finally, we analyze paths through the backbone and show that shared link distributions approximate a power law indicating that a small number of backbone links in our study are very heavily utilized.
Resumo:
We introduce a view-point invariant representation of moving object trajectories that can be used in video database applications. It is assumed that trajectories lie on a surface that can be locally approximated with a plane. Raw trajectory data is first locally approximated with a cubic spline via least squares fitting. For each sampled point of the obtained curve, a projective invariant feature is computed using a small number of points in its neighborhood. The resulting sequence of invariant features computed along the entire trajectory forms the view invariant descriptor of the trajectory itself. Time parametrization has been exploited to compute cross ratios without ambiguity due to point ordering. Similarity between descriptors of different trajectories is measured with a distance that takes into account the statistical properties of the cross ratio, and its symmetry with respect to the point at infinity. In experiments, an overall correct classification rate of about 95% has been obtained on a dataset of 58 trajectories of players in soccer video, and an overall correct classification rate of about 80% has been obtained on matching partial segments of trajectories collected from two overlapping views of outdoor scenes with moving people and cars.
Resumo:
Under natural viewing conditions small movements of the eye, head, and body prevent the maintenance of a steady direction of gaze. It is known that stimuli tend to fade when they a restabilized on the retina for several seconds. However; it is unclear whether the physiological motion of the retinal image serves a visual purpose during the brief periods of natural visual fixation. This study examines the impact of fixational instability on the statistics of the visua1 input to the retina and on the structure of neural activity in the early visual system. We show that fixational instability introduces a component in the retinal input signals that in the presence of natural images, lacks spatial correlations. This component strongly influences neural activity in a model of the LGN. It decorrelates cell responses even if the contrast sensitivity functions of simulated cells arc not perfectly tuned to counterbalance the power-law spectrum of natural images. A decorrelation of neural activity at the early stages of the visual system has been proposed to be beneficial for discarding statistical redundancies in the input signals. The results of this study suggest that fixational instability might contribute to establishing efficient representations of natural stimuli.